Successful Management of Helium Gas Embolism Following Intra-Aortic Balloon Pump Rupture

Sarah L. Scholl P.A.-C, Michael P. Hutchens, M.D., Howard K. Song, M.D.
Departments of Anesthesiology and Peri-Operative Medicine and Cardiothoracic Surgery
Oregon Health and Sciences University, Portland, Oregon

Introduction

Intra-aortic balloon pump (IABP) rupture is an uncommon occurrence. Early recognition and intervention can minimize patient complications.

Case

A 67 year old woman was admitted to ICU following multi-vessel coronary artery bypass grafting (CABG) and resection of an aortic valve tumor complicated by failure to separate from cardiopulmonary bypass. An IABP was placed intraoperatively for management of post cardiotomy shock (Datascope System 98XT). The early post operative course was complicated by continued cardiogenic shock requiring the IABP and multiple vasoactive agents, and ventilator dependent respiratory failure. The IABP was confirmed in proper position by daily morning chest radiography. Early on post operative day #2, the patient suddenly moved her leg. Blood was noted in the gas line and the gas loss alarm sounded. The IABP was removed immediately. Inspection of the balloon revealed a small tear.

On exam, the patient was unresponsive. The dose of epinephrine was increased to increase blood pressure and cerebral perfusion pressure (CPP) and to compensate for the loss of IABP augmented cardiac output. After 20 minutes, the patient began moving her left side. Blood in IABP gas lumen (shown after Figure 1: Morning CXR showing proper IABP tip position (arrow). removal)

Discussion

The IABP is a circulatory assist device used to increase myocardial oxygen delivery, cardiac output and coronary blood flow by counterpulsation. Blood is displaced into the proximal aorta by inflation during diastole. Aortic volume and afterload are reduced by rapid deflation during systole (4).

Helium gas is used as the shuttle gas in the IABP because its low density facilitates balloon cycling. However, its low solubility in blood can prolong ischemia distal to embolized gas bubbles. Helium has been shown to be more lethal than carbon dioxide when embolized (7). Treatment options include hyperbaric oxygen or increasing cerebral perfusion pressure with pressors. Our patient was too ill to transport to a hyperbaric oxygen chamber. We chose to use pressors to increase mean arterial pressure and cerebral perfusion pressure.

Review of the literature revealed several studies with large cohorts of IABP treated patients. The reported complication rate in recent series varies from 3-7% (5,6).

Vascular complications of IABP are well described, including ischemia to the limb distal to the insertion site, arterial dissection or aneurysm, and distal thromboembolism causing ischemic sequelae. The IABP may transiently occlude renal or spinal artery blood flow causing ischemic injury to these areas as well (3). Vessel laceration and/or dissection may occur during insertion. Life threatening retroperitoneal hemorrhage from laceration of the femoral artery has been described (3).

Cerebral vascular accident (CVA) is a rare complication. CVA can result from proximal placement or migration of the IABP, from IABP induced vascular trauma or thromboembolism(2).

Conclusion

Balloon rupture is a very rare event. It is generally attributed to the balloon being placed or cycling against a calcified plaque. Rupture requires immediate removal. Review of other reported cases suggests that patient movement may be a factor as it appears in the case presented here (1, 6).

IABP is a useful tool in managing post operative cardiogenic shock but is not without risks. Our patient experienced the transient effects of a helium gas embolus from a failed balloon. Early recognition, intervention, and management led to a satisfactory outcome from this rare complication.

References