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Abstract

Current natural language processing techniques for
recognition of concepts in the electronic medical record
have been insufficient to allow their broad use for coding
information automatically.  We have undertaken a
preliminary investigation into the use of machine learning
methods to recognize procedure codes from emergency
room dictations for a trauma registry.  Our preliminary
results indicate moderate success, and we believe future
enhancements with additional learning techniques and
selected natural language processing approaches will be
fruitful.
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Introduction

One of the major promises of the electronic medical record
(EMR) is the ability to aggregate data from individual
patients for clinical research, outcomes measurement, and
quality assurance.  A major impediment to this vision is
that most patient data is "locked" in clinical narratives.
That is, much information about patient care is captured as
free text, with little structure or normalization of language.
While this type of information is easy for the providing
clinician to generate and for his or her colleagues to read
and interpret in the context of clinical care, its use for
aggregation by computer has been difficult.  With the
growing use of EMRs and computer-based reporting of
clinician dictations, the automated interpretation of clinical
narratives would be a major contribution.

A number of investigators have assessed the use of natural
language processing (NLP) for identifying and codifying
information in clinical narratives.  The Linguistic String
Project of Sager et al. was one of the earliest efforts,
showing that for limited domains using "cleansed" (i.e.,
spelling errors correction, heading and other non-clinical
information removed) data, 80-90% of concepts could be
recognized [1]. Some have also integrated NLP functions
into EMRs for recognition of clinical events [2,3]. Others
have attempted to predict diagnosis codes based on words
that occur in discharge summaries [4] or exacerbations of
asthma based on progress notes [5].

The goal of unrestricted NLP, however, has not been met.
All of the above systems work in limited domains and,
while very valuable to those domains, have not been easily
scaled to other areas. We have noted a number of problems
impeding large-scale NLP, such as the limitations of
vocabularies that would serve as the "targets" for mapping
of concepts [6] as well as practical problems, such as
spelling errors or otherwise unrecognizable words [7].

Much work in NLP has focused on deterministic methods,
whereby investigators attempt to map the concepts present
in text into a normalized representation (14). The major
problem with deterministic NLP is language production is
not deterministic.  All but the simplest language suffers
from ambiguity, and when combined with the operational
problems of on-line text (e.g., the spelling errors and
extraneous information), it is all but impossible in large
domains.  Some have attempted to recast the problem in a
probabilistic manner [8].  Others have abandoned most of
the syntax and instead developed semantic grammars that
attempt direct semantic identification with a minimum of
syntactical processing based on predictable aspects of
clinical language [9].

For this project, we tried a different approach; we assessed
the use of machine learning for the assignment of
procedure codes in a trauma registry. A unifying feature of
different machine learning approaches is that classification
and prediction rules are "learned" from existing data
without the need for complex rules and knowledge bases
typical of expert systems. Using emergency room
dictations as input data, we trained models to predict
which procedures were performed on trauma patients.

We view this initial study as our first investigation into the
larger picture of whether machine learning techniques can
enhance the ability to codify clinical narratives.  If
successful, this approach could allow the identification of
medical information without identification of specific
strings in the text, as is attempted in deterministic NLP.

Materials and Methods

The goal of this study was to identify procedure codes
from a trauma registry.  OHSU maintains a trauma registry
that identifies all trauma patients in the state of Oregon



[10]. A total of 119 fields are abstracted from the trauma
patient’s medical record, including trauma type, vital signs,
various laboratory procedures performed, diagnostic
codes, and outcomes measurements (e.g., admission to
hospital ward or intensive care unit, death).  The coding of
each record is, like most chart review processes, a very
labor-intensive task.  Note that the coders have access to
the entire medical record, and not just the dictation.

In this study, we looked at using only words and phrases
from the dictated report by the initial ER physician to
predict procedures that were performed during the first 24
hours after arrival to the ER.  The database codes a total of
64 procedures, for example, OXYGEN, PFP (Plain Films
Pelvis), CTA (CT Abdomen), and so on.  For these
experiments, we selected patients entered into the registry
between March 17, 1994 and October 29, 1995.  We then
obtained the text of each patient’s ER physician’s dictation
from the OHSU EMR system and matched it with the
record from the registry.

A priori, any combination of procedures may apply to a
particular case.  The task is thus detection (where several
procedure codes may occur), rather than classification
(where only one of a number of codes occurs).  A total of
600 dictations were used for this study.  The data were
divided into separate parts for model fitting and
evaluation.  The remainder of the data is being held out for
future work.

The preliminary representation used was simply a vector
of the frequency of occurrence of each word in the
dictation. After removing stop words, and discarding those
words occurring only once in the data, we were left with a
lexicon of 3186 words from which to build detectors.
Hence each dictation is described as a word-frequency
vector of dimension 3186.

Building models with a limited amount of data in such a
large feature space is impractical, so a dimension-
reduction technique is required to obtain an input of
reasonable size.  We used principal component analysis
(PCA) [11] to perform the reduction.

In PCA, the original features (word-frequency vectors for
each dictation) of dimension N are mapped to a lower-
dimensional vector space by projecting onto the M (M<N)
eigenvectors of the data correlation matrix corresponding
to the highest eigenvalues.  This choice minimizes the
expected squared error between the original vector and its
dimension-reduced representation, and retains the maximal
variance directions in the original space.  The eigenvalues
and corresponding eigenvectors were extracted by singular
value decomposition (SVD) [12] performed on the matrix
whose rows consist of the word frequency vectors.  The
SVD used only the dictations reserved for model fitting, so
that the model generation is carried out without use of the
evaluation data. Hence, the starting point is a feature space
of dimension N=360, reduced to some M<N by PCA.

Our preliminary detectors were built by logistic regression
[13].  A separate detector was built for each of the chosen
procedure codes, using the PCA-transformed word
frequency vectors as input.

Each detector maps the input x R M∈   to output

y ∈  [ , ]0 1  through a logistic function

   ( )( )y x w x wT( )   /  exp   = + − +1 1 0 ,                         (1)

where w R M∈  and w R0 ∈  are the model parameters.

The output is regarded as the probability that the code
occurred, i.e., that target t=1, for that particular input.
That is,

( ) ( )     y x P t x= = 1 .

Equivalently, the detector output is the conditional mean
of a binomial distribution on the target values.  This
distribution can be written

   ( ) ( )( )P t x y x y xt x t x
    ( )  ( )( ) ( )= − −

1
1

.

Maximum likelihood estimation of the model parameters
w and w0  for this distribution (applied to all the training
data) is equivalent to minimization of the cross-entropy
cost function [14, for example]
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E w w t x y x t x y x
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where the sum is over all input-target pairs in the training
data.  The cost E can be minimized by any of a number of
standard function minimization algorithms.  We used the
Broyden Fletcher Goldfarb Shanno quasi-Newton
algorithm [15] as implemented in the MATLAB numerical
package.

Even with the preliminary dimension reduction, we have a
relatively sparse amount of data with which to build and
evaluate models.1  Thus, as with most statistical modeling
procedures, we require some means of balancing model
complexity to the available training data.  Regularization
techniques such as ridge regression [13, for example],
early stopping in recursive optimization procedures [14],
and pruning techniques based on cost function curvature
(Hessian) [16,17, for example] all provide complexity
control.  For the purpose of this study, we pruned the
model size by successively eliminating input variables
(principal components of the word frequency data) starting
with those of least variance.  This is a basic form of the
pruning technique developed in [17].

Results

For these experiments, we selected the subset of 23 (of the
total 64 procedure codes) that occur in between 5 and 95%

                                                       
1 More data is available, but our preliminary experiments were
kept small until confidence in the representation and approach
merits increased data preparation.



of the dictations.  We trained separate logit model
detectors for these procedure codes using between 2 and
60 principal components as inputs.   We reserved 1/5 of
the data, chosen at random, for testing.  The remaining
“training” data was used for model size selection and
parameter fitting.  Performance for a model of a given size
was estimated by fitting a model of that size to a randomly
selection of ¾ of the training data, and then measuring
performance on the remaining ¼.  This was done 5 times.
The model size with the best average performance was
selected, and a model of that size fit to the entire training
set and tested on the reserved 1/5.  This entire procedure
was done for 8 random partitions of the data into training
and testing sets; the result reported is the average over the
8 partitions of the performance on the testing set for that
partition.

The point of this study was to address whether or not
anything of use can be learned from even a naive
representation of the dictations.  The results indicate that
the word frequencies do carry information enabling one to
do better than chance for many of the procedure codes.

The results are shown in Table 1.  To assess how well one
can do by guessing, consider the following. If the
frequency of occurrence of a procedure is thought to be
greater (less) than 0.5, then, in the absence of information
from the dictation, one should always guess that the
procedure did (did not) occur. This produces the best
guess.  The table gives the frequency of occurrence (in the
training data) in the column labeled "Prior”, and the
fraction of correct guesses on the  test samples in the
column labeled "Guess".  (Note that the prior frequency,
and even correct guess, can differ between the training and
test sets and between partitions.)  The fraction of correct
detections for the optimal logit models is in the fourth
column.  The last column gives the fractional improvement
in detection rate between the best guess, and the logit
model calculated as

  ( logit - guess ) / logit

All values are averages over the 8 partitions.

For the procedures with very low or very high priors, the
logit models are not able to improve the already good
performance available by guessing based on the prior
frequencies.  One expects the logit models, or any other
model, to show the most improvement for priors near 0.5,
where guessing is most difficult.  This is indeed the trend.

Discussion and Future work

We find it promising that even our simple representation
can extract some information from the dictations, leading
to prediction performance beyond the chance level.

Table 1 – Detector performance

Code Prior Guess Logit Increase

PFANK 0.054 0.943 0.942 -0.001

VECURON 0.062 0.933 0.925 0.-009

PFLS 0.070 0.920 0.921 0.001

PFTIB/FIB 0.072 0.931 0.931 0.000

PFTS 0.069 0.935 0.935 0.000

PFK 0.084 0.929 0.926 -0.003

SUCC 0.088 0.902 0.892 -0.012

PFSHOULD 0.069 0.919 0.918 -0.001

BVM 0.091 0.913 0.927 0.016

ET 0.111 0.885 0.892 0.008

EKG 0.120 0.896 0.896 0.000

CTP 0.161 0.820 0.818 -0.002

CTA 0.202 0.774 0.794 0.026

PFP 0.405 0.577 0.767 0.330

OXYGEN 0.507 0.483 0.623 0.299

DT 0.525 0.543 0.590 0.092

CTH 0.552 0.576 0.852 0.484

CARDIAC 0.719 0.717 0.717 0.000

PFCS 0.746 0.768 0.902 0.175

CRYST 0.895 0.894 0.894 0.000

PFC 0.906 0.926 0.924 -0.003

Evaluating our algorithm’s performance is difficult since
the procedure codes have been assigned to cases by human
coders with access to more information than is given to
our algorithm.  If future results warrant, we plan to
measure the performance of professional coders given only
the dictation, as a more accurate benchmark.

Even without an accurate benchmark, it is clear that our
naive dimension-reduced word frequency vector approach
has some potential problems. PCA is carried out without
regard for the detection task; it is only concerned with
capturing variance in the input data.2 There is no guarantee
that the high variance directions in the input data are those
most suitable for discrimination. For example, suppose a
rare procedure is "marked" by a word that occurs if and
only if that procedure has been performed, as may be the
case for procedures consisting of the administration of a
particular drug. Then the marker word is also rare, and it
will be nearly orthogonal to the reduced-dimention PCA
representation. In this case, the magnitude of its PCA
projection can be very small, and the projection of a
document containing it may be dominated by other
irrelevant but more commonly occurring words. Hence,
even though perfect prediction is possible in this case, the
necessary input has gotten ‘lost in the noise’, and learning
may be difficult due to spurious correlations in the training
set. We plan to look at more directly word-based input
features to improve performance on rare procedures (see
                                                       
2 Dimension reduction/feature selection techniques that
concentrate on discrimination, rather than input variance, can aid
detection. One simple extension of PCA, proposed by Fukunaga
and Koontz [18] offers improved discrimination and may be
useful for this task.



below).

In an effort to interpret the models directly in terms of
word-based inputs, we transformed the discriminatory
direction w in equation (1), from the PCA representation
back to the word space.  One finds that it has large
components along a few words, and smaller components
on the remainder.  This would suggest that one can build
good predictors using a subspace of the original word
space, and thereby obtain discriminatory models that have
obvious linguistic interpretation.  Our efforts to do this
have failed -- models built in word subspaces perform
poorly.  We suspect that the problem lies with the original
PCA representation, which uses coordinates (the
eigenvectors) that are very diffuse mixtures of the words.
This again suggests that an input representation closer to
the original word base would be a better choice.

The second problem with our naive representation is that
the use of single words as features loses all contextual
information. In particular, it breaks up semantically
meaningful units such as noun phrases into potentially less
predictive pieces, destroys the relation of negation to the
thing negated, and loses disambiguating syntactic
information.

We experimented with a simple phrase generation
algorithm, taking a phrase to be a longest sequence of non-
stop words, with stop words chosen from a standard list,
but this gave no essential improvement. There are two
related possible reasons for this: first, the simplicity of the
phrase determination algorithm causes many essentially
similar phrases to be viewed as different, leading to
diminished correlation between the phrases and the
procedures.  Second, the increased number of phrases,
compared to the number of single words, exacerbates the
sparse data problem.

We plan to explore two approaches here. First, we’ll
explore the use of NLP techniques to construct noun
phrases and part-of-speech tags, and to "match" negation
to its object. Second, we plan to modify Cohen & Singer’s
sleeping experts algorithm to our task [19].  This algorithm
constructs context-bearing ’sparse phrases’ on a statistical
rather than NLP basis.

A more informative representation of the dictations,
incorporating the NLP techniques discussed above, should
improve performance considerably.  When such a
representation is established, it is likely that we will be
able to leverage more sophisticated detection technology
to further improve performance.  We have applied neural
networks to the present word frequency representation,
both for individual code detection, and for detection of
clusters of correlated codes. Those experiments showed no
gain relative to the simple logistic model presented here;
though we expect that with more data, and with more
sophisticated representations, we will see improvement
beyond the logistic regression model.

In general, virtually any statistics-based attempt at free text
classification has a sparse data problem, due to the large
size of any usable vocabulary relative to the number of

available labelled examples. The trauma registry now
contains several years worth of entries, and future
experiments will use larger amounts of data. Dimension
reduction of the input space will still be needed to ensure
that the different input features are sampled sufficiently
often that the relevant statistics can be reliably estimated.
Unreliable estimation, when uncorrected, leads to
increased model variance, i.e. to classifiers that generalize
differently from the same training data. We plan to explore
reducing input dimension using semantic information, in
three ways.  First, by using a dictionary to filter out words
unlikely to be relevant.  Second, by using a thesaurus (e.g.,
WordNet [20] to canonicalize the input space by reducing
all synonyms, or more generally all words of a particular
category, to a single feature. Third, by mapping phrases
into a controlled vocabulary [21].  We also plan to deal
more directly with model variance effects by use of
bootstrapping and other data resampling techniques to
improve the statistical estimates [22], and by the use of
committees of models to directly reduce model variance.

We also intend to broaden our approach to use other,
structured, data in conjunction with narrative reports.  We
plan to add vital signs and laboratory data into our models
to determine whether they can, alone or in concert with
narrative data, improve our predictive performance.

Finally, our long-term plan is to assess the optimal use of
techniques in the real-world setting.  It is unlikely that any
automated approach to coding will ever achieve 100%
accuracy.  Therefore some human input will be required to
choose the proper codes.  It may be that a practical role for
these techniques will be to assist human coders in
identifying terms faster and/or with more accuracy.  We
will enlist colleagues in the human-computer interface
field to develop optimal interfaces that use our techniques.
One possible use of text categorization in general is the
construction of high-level overviews of a collection of
documents, for example, a medical record [23]. If
successful, we will move closer to realizing one of the
promises of the EMR, which is to aggregate data from
individual patients for clinical research, outcomes
measurement, and quality assurance.
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