
LETTER Communicated by Eugene Demidenko

Kernels for Longitudinal Data with Variable Sequence
Length and Sampling Intervals

Zhengdong Lu
zhengdong@gmail.com
Microsoft Research Asia, Beijing 100080, P.R.C.

Todd K. Leen
leent@ohsu.edu
Department of Biomedical Engineering, Oregon Health & Science University,
Beaverton, OR 97006, U.S.A.

Jeffrey Kaye
kaye@ohsu.edu
Layton Aging & Alzheimer’s Disease Center, Oregon Health & Science University,
Portland, OR 97239, U.S.A.

We develop several kernel methods for classification of longitudinal data
and apply them to detect cognitive decline in the elderly. We first develop
mixed-effects models, a type of hierarchical empirical Bayes generative
models, for the time series. After demonstrating their utility in likelihood
ratio classifiers (and the improvement over standard regression models
for such classifiers), we develop novel Fisher kernels based on mixture
of mixed-effects models and use them in support vector machine classi-
fiers. The hierarchical generative model allows us to handle variations in
sequence length and sampling interval gracefully. We also give nonpara-
metric kernels not based on generative models, but rather on the repro-
ducing kernel Hilbert space. We apply the methods to detecting cognitive
decline from longitudinal clinical data on motor and neuropsychological
tests. The likelihood ratio classifiers based on the neuropsychological
tests perform better than than classifiers based on the motor behavior.
Discriminant classifiers performed better than likelihood ratio classifiers
for the motor behavior tests.

1 Introduction

Early detection of cognitive decline provides the opportunity for more ef-
fective medical intervention, planning for compensation strategies, and
assistance (Boise, Morgan, Kaye, & Camicioli, 1999; Gwyther, 2000; Riefler
& Larson, 1988). A large body of literature indicates that there are presymp-
tomatic clinical markers of future cognitive decline that can be readily
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assessed over time. These studies require a longitudinal cohort design such
that baseline or early measures of function are then used to prospectively
predict those who will develop mild cognitive impairment (MCI) or de-
mentia. (See section 2 for the clinical definition of MCI.) This body of work
consistently indicates that baseline cognitive and motor function assessed
up to decades prior to developing dementia is highly predictive of later
cognitive decline. Tests assessing cognitive function, such as delayed recall
of information (episodic memory), as well as motor function, are predictive
(Marquis et al., 2002; Richards, Stern, & Mayeux, 1993; Verghese et al., 2002;
Wilson, Schneider, Bienias, Evans, & Bennett, 2003; Howieson et al., 1997;
Chen, Ratcliff, Phil, Belle, Cauley, Kosky, et al., 2000).

There is a consistent pattern of change in cognitive and motor domains
that occurs presymptomatically, leading to MCI and to dementia. Although
these test domains predict group outcomes years later, they are difficult to
apply to individual subjects to predict decline with a degree of certainty
that is clinically useful. This limitation comes from the analysis methods
used as well as the data types employed to date.

In this letter, we address the prediction problem at the individual level as
a classification problem. The aim is to predict if an individual will become
cognitively impaired based on his or her motor and cognitive test data from
longitudinal clinical assessments. The difficulties we face are the extreme
sparseness of the observation and the high variability among subjects.

Classification of longitudinal data is a supervised learning problem
aimed at labeling (temporal) sequences of variable length and variable
sampling intervals. There are two basic methods for such problems. In the
first, one builds a generative model for the sequences and uses likelihood
ratio or posterior probability to determine class membership (Seymore, Mc-
Callum, & Rosenfeld, 1999). In the second, one directly trains a classifier,
which requires transforming the sequences into vectors of attributes (or
features) (Keogh & Pazzani, 1998). As many have pointed out, classifiers
based on generative models and likelihood ratio tests often yield poor per-
formance relative to those obtained by training a discriminant function
directly (Jaakkola, Meila, & Jebara, 1999). However, feature extraction is
still more art than science, and the performance of discriminants depends
heavily on the designer’s prior knowledge and the particular heuristics
implemented. In a hybrid approach, one extracts discriminative features
from a generative model, such as the Fisher kernel proposed by Jaakkola &
Haussler (1998).

In this letter, we develop both generative and discriminative methods
designed for classifying clinical longitudinal data. Our generative models
are the mixed-effects models (Laird & Ware, 1982), a type of empirical Bayes
model commonly used in biostatistics for its ability to describe variability
among individuals. From these, we build likelihood ratio classifiers. For
discriminative-trained classifiers, we use support vector machines with
new kernels designed for the longitudinal data.
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Our new kernels extend the usual Fisher kernel by exploiting the struc-
ture of the mixed-effect model to deal properly with time series of unequal
length and variable sampling intervals. The formulation allows the Fisher
information (metric) to be explicitly calculated, even when sequence lengths
and sampling intervals are variable. This avoids the usual ad hoc replace-
ment of the Fisher information with an identity matrix, and hence we retain
the information-geometric invariance enjoyed by the Fisher kernel. Use of
the correct Fisher information also improves performance of the support
vector machine (SVM) since the Fisher scores receive the proper scaling.
We also examine kernels based on parametric and nonparametric feature
extraction methods independent of the mixed-effect models. The nonpara-
metric method gives a new distance measure that is potentially useful in a
variety of variable-sequence-length problems.

In the next section, we describe the six types of the clinical observations
we use. In section 3, we give a brief introduction to the mixed-effect model,
together with the fitting result on our data. In section 4, we present the
detection results based on the mixed-effect models. In sections 5 and 6,
we discuss in detail the discriminative models based on the Fisher kernel
extension and other feature extraction routines. In section 7, we present the
empirical comparison of the classification algorithms we discuss. Finally,
section 8 summarizes the letter and points the direction of future research.

2 Data Description

Our research uses clinical motor behavior and psychometric data from the
Oregon Brain Aging Study (OBAS) (Green, Kaye, & Ball, 2000). The cohort
consists of 216 subjects—91 males and 125 females. All subjects are normal
at entry, and when the data were drawn, 78 of them had developed into
mild cognitive impairment (MCI) or worse, while 138 remained cognitively
healthy. A subject is diagnosed with MCI if he or she has two consecutive
Clinical Dementia Rating (CDR) scores of 0.5 or greater.1 If the CDR is over
0.5 at least once but never in two consecutive clinical visits, the subjects
are tagged questionable dementia. We split the subject pool into an impaired
group (or class) and a normal group according to their state when the
data were drawn from the database. In our current study, we include the
questionable dementia subjects with the normal group.

Since we are interested in the prediagnosis prediction, we use only the
measurements before a clinical diagnosis of MCI or dementia is made. For
a reliable prediction for individual subjects, we consider only subjects with
at least four motor measurements before the cut-off date, which reduces
the number of qualified subjects to fewer than 150, 46 in the impaired

1The CDR takes values 0, 0.5, 1, and 2, where 0 stands for the normal and the other
values stand for increasing level of impairment.
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Table 1: Description of Data.

Test Type Description No. N

Gait speed The time in seconds the subject takes 97
to walk 9 meters (∼30 feet).

Steps The number of steps the subject takes 97
to walk 9 meters (∼30 feet).

TappingD The number of times the subject can tap 97
the forefinger of his or her dominant hand
in 10 seconds (averaged over three trials).

TappingN The number of times the subject can tap 97
the forefinger of his or her nondominant
hand in 10 seconds (averaged over three trials).

Delayed recall The number of words (out of 10) a subject can 86
recall 1 minute after the words are read to him or her.

Logical memory II The subject is asked to repeat a story that was told 82
15 to 20 minutes ago and is graded according to
the level of matching between the repeated story
and the original one

Note: The right-most column gives the number of cognitively normal subjects.

group, and fewer than 100 (varying with the types of measurements) in
the normal group. The measurements used include four motor behaviors
(gait speed, steps, tappingD, tappingN) and two neuropsychological tests
(delayed recall, logical memory II), as described in Table 1. For gait speed,
steps, delayed recall, and logical memory II, the readings increase as the
subjects age or become impaired, while for tappingD and tappingN, the
trend is the opposite.2

Figure 1 shows a sample of the gait speed data. In the left panel, we
give eight measurements of the test (across 7 years) of one subject who later
developed into dementia, with each measurement plotted as a circle and
consecutive measurement pairs connected by a line. In the right panel, we
plot all the measurements from all 46 subjects in the impaired group. The
plot in the right panel is called a spaghetti plot.

Our goal is to use the time-series data prior to a clinical diagnosis to
predict whether an individual will become impaired. The evaluation of the
prediction model for this requires the ground truth about individuals’ fi-
nal cognitive state. In our study, we group the subjects based on whether
they are diagnosed with MCI or dementia when the data were drawn. The
labeling is inherently inaccurate since some subjects who are normal when
the data are drawn will later develop cognitive impairment. This problem
is known as right censoring in survival analysis (Klein & Moeschberger,
2003). In light of this, the classification approaches (and the way they are

2Since we are assessing motor as well as cognitive predictors, subjects who develop
motor impairment from other causes (for example Parkinson’s or arthritis) are not in-
cluded in the data.
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Figure 1: Sample plots of gait speed from the impaired group. (Left): One ex-
ample subject with eight measurements of the gait speed test (across 7 years)
who later developed cognitive impairment. Each measurement is plotted as
a circle, and any two consecutive measurements are connected by a line.
(Right): Spaghetti plot of seconds measurements from all 46 subjects in the
impaired group.

evaluated) we discuss in sections 4 to 6 should be considered as an approx-
imation. We expect that a future extension of our work will enable us to
predict the probability that a subject becomes impaired at any future age,
the survival function.

3 Mixed-Effect Models

Mixed-effect models provide a flexible and powerful tool for the analy-
sis whenever several measurements are taken from an individual showing
consistent differences from the population as a whole. They model both
overall population behavior and the variations between individuals. Mixed-
effect models have long been used for analyzing longitudinal data (Laird
& Ware, 1982; Demidenko, 2004), and are a suitable modeling tool for our
longitudinal clinical data. Mixed-effect models provide a principled way
to summarize a population of time series (both general behavior and dif-
ferences between individuals), and thus a means to compare populations.
This property is of fundamental importance to our task of discriminating
among individuals who will become cognitively impaired and those who
will remain normal.

3.1 Regression Models. We confine our attention to parametric regres-
sion.3 Suppose there are k individuals (indexed by i = 1, . . . , k) contribut-
ing data to the sample, and we have observations {ti

n, yi
n}, n = 1, . . . , Ni as

3Nonparametric mixed-effect regression is discussed by Guo (2002).
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a function of time t for individual i . The data are modeled as

yi
n = f (ti

n; γ i ) + εi
n, (3.1)

where γ i are the regression parameters and εi
n is zero-mean white gaussian

noise with (unknown) variance σ 2. The superscript on the model parame-
ters γ i indicates that the generative model is different for each individual
contributing to the population. Since the model parameters vary across in-
dividuals, it is natural to consider them generated by the sum of a fixed and
a variable piece, called the random effect:

γ i = α + β i , (3.2)

where β i is assumed distributed N (0, D) with unknown covariance D. The
expected parameter vector α, called the fixed effect or population model,
determines the model for the population as a whole. This intuition is most
precise for the case in which the model is linear in parameters,

f (t; γ ) = γ T B(t) = αT B(t) + βT B(t), (3.3)

where B(t) = [B1(t), B2(t), . . . , Bd (t)]T denotes a vector of basis function, for
which α gives the average model over individuals.4 Model fitting uses the
entire collection of data {ti , yi}, i = 1, . . . , k to determine the parameters
M ≡ (α, D, σ 2) by maximum likelihood, considering the random effects
{β i } as latent variables.

3.2 Maximum Likelihood Fitting. The likelihood of the data {ti , yi }
given the mixed-effect model M = {α, D, σ 2} is

p(yi ; ti ,M) =
∫

p(yi | β i ; ti , σ )p(β i |M)dβ i

= (2π)−Ni /2|�i |−1/2 exp((yi − αT B(ti ))T (�i )−1

× (yi − αT B(ti ))),

where

�i =
Ni∑

n=1

B
(
ti
n

)
DB

(
ti
n

)T + σ 2I,

B(ti ) = [B(ti
1

)
, B
(
ti
2

)
, . . . , B

(
ti
n

)]T
.

4More generally, the fixed and random effects can be associated with different basis
functions.
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The data likelihood for Y = {y1, y2, . . . , yk} with T = {t1, t2, . . . , tk} are then

p(Y; T,M) =
k∏

i=1

p(yi | ti ;M).

We use the expectation-maximization algorithm (Dempster, Laird, & Ru-
bin, 1977), with {β1, β2, . . . , βk} considered the latent variables, to find the
maximum likelihood values of {α, D, σ }. The steps are

E-step: Q(M,Mg) = E{β i }(log p(Y, {β i }; T,M)|Y; T,Mg), (3.4)

M-step: M = arg max
M

Q(M,Mg), (3.5)

where Mg stands for the estimation of the mixed-effect model obtained
in previous step and the expectation in the E-step is with respect to the
posterior distribution of on {β i } when Y is known and the model parameter
is Mg . For the linear mixed-effect model in equation 2.3, the M-step has a
closed form:

α =
(

k∑
i=1

B(ti )T B(ti )

)−1 k∑
i=1

Ni∑
n=1

(
yi

n − E(β i |yi , ; ti ,Mg)T B(ti )
)
, (3.6)

D = 1
k

k∑
i=1

E(β i (β i )T |yi ; ti ,Mg), (3.7)

σ 2 = 1∑k
i=1 Ni

k∑
i=1

E(||εi ||2 | yi ; ti ,Mg). (3.8)

The calculation of the expectations in equations 2.6 to 2.8, performed in
the E-step, are straightforward since they are all expectation of linear or
quadratic function of gaussian variables. Several methods for fitting mixed-
effect models are given in the seminal literature (Laird & Ware, 1982; Laird,
Lange, & Stram, 1987).

3.3 Mixed-Effect Models on OBAS Data. In this section, we present the
mixed-effect models fit by maximum likelihood. We use the linear mixed-
effect model with order 1 polynomial basis functions B(t) = [1, t]T .5 We
trained the mixed-effect model on all six measurements. For the four mo-
tor behavior measurements, we use the logarithm of measurement as the
predicted variable to improve symmetry of the residuals.

5Order 2 basis functions provided better generative models but worse classification
performance, and so are omitted.
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Figure 2: The fit mixed-effect models for tappingD and logical memory II. The
linear mixed model with basis function B(t) taken to be a linear polynomial in t.
In each panel, the solid black line is the population (fixed effect) model αT B(t).
The two boxed curves are αT B(t) ±√

B(t)T DB(t) (the population model ± the
deviation due to the random effects β carrying the variation between individu-
als). The black dashed line contains the deviations from both the random effects
and the observation noise ε (i.e., αT B(t) ±√

B(t)T DB(t) + σ 2).

Figure 2 shows the mixed-effect models for tappingD and logic mem-
ory II. The plots show the fixed-effect regression αT B(t) (solid curve), the
expected standard deviation from the random effect, which carries the vari-
ability between subjects (boxed curves), and the independent measurement
noise (dashed curve; see the caption). Clearly for tappingD, the fixed-effect
model for the impaired group decreases faster than the one for the normal
group, and the variance from the random effect in the impaired group is
larger than in the normal group. For logic memory II, the difference be-
tween models of impaired group and normal group is obvious. The figure
shows that the random effects, capturing the variability between individ-
uals, account for a large proportion of the variation from the fixed effect
curve; the observation noise accounts for very little of that variability. A
standard regression model would not have the random-effect terms and
would ascribe all of the large variation away from the fixed-effect curves to
noise. This would lower the discrimination of classifiers (as the data would
appear noisier than it is when fit with a more appropriate model).

3.4 Mixture of Mixed-Effect Models. A population may consist of sev-
eral subpopulations with different characteristics. Indeed, as shown in sec-
tion 3.3, the motor ability of individuals destined to become cognitively
impaired declines more dramatically than in individuals who remain cog-
nitively healthy (Camicioli, Howieson, Oken, Sexton, & Kaye, 1998; Marquis
et al., 2002). It is sensible to describe the population with people from the
two groups with a mixture of two mixed-effect models6: one fit on the

6It is straightforward to construct such a mixture with more than two components.
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normal group (denoted M0) and one fit on impaired group (denoted M1),
with

Mm = {αm, Dm, σm}, m = 0, 1.

Here, we use M̃ = {π0,M0, π1,M1} to denote the parameters of this
mixture, where π0 and π1 are the mixing proportions (prior) estimated from
the individuals in the training data. Let zi ∈ {0, 1} be the mixture latent
variable, with 1 indicating yi generated by the impaired component and 0
the normal component. The generative process consists of three steps:

1. Set the value of zi as in {0, 1} with probability π0 and π1. (This chooses
the generating component from the mixture.)

2. Draw γ i from the gaussian distribution N (αzi , Dzi ), where αzi and Dzi

are, respectively, the fixed effect and the covariance of the random
effect in model Mzi .

3. Let yi
n = (γ i )T B(ti

n) + εi
n, where εi

n is drawn from N (0, σ 2
zi ).

4 Detecting Cognitive Decline

Our long-term goal is to use motor and cognitive test data to reliably pre-
dict cognitive decline in the individual. Ultimately such predictions would
encompass an estimate of the time horizon to a clinical diagnosis, or the
time horizon to decline to more severe impairment for a mildly impaired
individual. Our aim here is to predict whether an individual will become
impaired. We consider several solutions to this classification problem. In
this section, we use likelihood ratio tests to build a classifier based on the
mixed-effect models. In sections 5 and 6, we discuss classifiers based on
discriminative methods.

4.1 Likelihood Ratio Classifier Based on Mixed-Effect Model. Let
us consider the mixture of mixed-effect model M̃ = {π0,M0, π1,M1} dis-
cussed in section 3.4. For any given observation (t, y), the posterior proba-
bility that this observation is generated from M0 is given by

P(z = 0|y; t,M̃) = π0 p(y; t,M0)
p(y; t,M̃)

= π0 p(y; t,M0)
π0 p(y; t,M0) + π1 p(y; t,M1)

, (4.1)

where to get p(y; t,Mm), we need to integrate out the random-effect pa-
rameter β; that is,

p(y; t,Mm) =
∫

Rd
p(y; t, αm + β)p(β;Mm) dβ

= (2π )−n/2|�m|−1/2 exp((y − αT
m B)T (�m)−1(y − αT

m B)),
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where

�m =
N∑

n=1

B(tn)Dm B(tn)T + σ 2
mIn×n,

B = [B(t1), B(t2), . . . , B(tn)]T .

The classification decision can be made based on the posterior probabil-
ity, the group index given by

c =
{

0 P(z = 0|t, y;M̃) ≥ 0.5
1 otherwise

. (4.2)

Equation 4.2 is the optimal Bayesian classifier that minimizes the expected
the 0-1 loss,

P(z = 0|t, y;M̃)I (c �= 0) + P(z = 1|t, y;M̃)I (c �= 1), (4.3)

where I (·) is a function with Boolean input and binary output:

I (ω) =
{

1 ω is true
0 otherwise .

If misclassification of each group carries a different cost, we instead mini-
mize

CI P(z = 0|t, y;M̃)I (c �= 0) + CN P(z = 1|t, y;M̃)I (c �= 1), (4.4)

where CN is the cost of misclassifying a normal individual and CI is the cost
of misclassifying an impaired individual. The optimal classifier is given by

c =
⎧⎨⎩ 0

p(yi ; ti ,M0)
p(yi ; ti ,M1)

≥ π1

π0

CN

CI

1 otherwise
, (4.5)

where p(yi ;ti ,M0)
p(yi ;ti ,M1) is referred to as a likelihood ratio.

We define the detection rate as the fraction of impaired subjects who are
correctly identified and the false alarm rate as the fraction of normal subjects
who are incorrectly identified as impaired. The graph of detection rate as a
function of the false alarm rate is the receiver operating characteristic (ROC)
curve (Pepe, 2003), which we use to evaluate and compare classifiers.
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4.2 Evaluation of Classifiers. The performance of a classifier is assessed
by the area under the ROC curve (AUC), which can be empirically estimated
(Pepe, 2003) by

AUC = 1
kI kN

kI∑
i=1

kH∑
j=1

{
I
(
Yi

I > Y j
N

)+ 1
2

I
(
Yi

N = Y j
I

)}
, (4.6)

where Yi
I is the classifier output for subject i in impaired group and Y j

N is the
classifier output for subject j in the normal group. To compare two classifiers
A and B, we calculate the difference between the two corresponding AUCs:


AUC = AUCA − AUCB .

We test the null hypothesis AUCA = AUCB by comparing the 
AUC/√
var{
AUC} with a standard gaussian distribution (Z -test), where

var{
AUC} is the sample variability, estimated by jack-knife. We will refer
to the p-values for significance tests of the statement, “Classifier A is differ-
ent from classifier B.” The estimation of var{
AUC} can be found in Pepe
(2003).

Throughout the study, we use a leave-one-out cross-validation to eval-
uate the classifiers. In each validation round, we use the data from k − 1
subjects to train a classifier, including the mixed-effect models (where used)
and the support vector machines described later, and we test the trained
classifier on the data from the single left-out subject. We report test classifi-
cation results averaged over all k validation rounds. The same training test
strategy is used with design of Fisher kernel extension in section 5.

4.3 Classification with and Without Random Effects. To demonstrate
the discriminative power we gain by including both the random and fixed
(population) effects, we consider a model without random effects. This
model attributes the large differences among individuals in the same group
as observation noise. The maximum-likelihood fitting of this model is a
simple least-squares regression. We use S0 and S1 to denote the simplified
model fit on the normal group and impaired group, with Sm = {μm, sm},
where μm are the regression parameters and sm is the observation noise.7

Once the models are fit, we can calculate the likelihood of any novel sample
(sequence) y under each model as

p(y; t,Sm) = (2π )−n/2σ−n exp
( ||y − μT

mB||2
2s2

m

)
,

7Generally μm �= αm, although in our experiments they are fairly close.
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Figure 3: The ROC curves of the likelihood ratio classifiers. The number in the
parentheses is the p-value (Z -test) for the null hypothesis: AUC of mixed-effect
model is the same as the AUC of the one trained without the random effects.

with B = [B(t1), B(t2), . . . , B(tn)]T , based on which we build the likelihood
ratio classifier.

We expect that classifiers based on mixed-effect models should outper-
form this baseline classifier since the random effects describe the systematic
variation of an individual sequence from the overall (fixed effect) popula-
tion curve as a structured and consistent difference rather than as random,
uncorrelated noise. The comparison between the two classifiers on steps,
tappingD, and delayed recall is in Figure 3. Our result shows that the mixed-
effect model is generally better than the simplified model in terms of AUC,
but this superiority is statistically significant (at the 0.05 level) only on the
delayed recall.

4.4 Discriminative Methods. Direct discriminative methods often per-
form better than likelihood ratio tests. One reason, discussed by many
authors, is that generative models trained by a maximum likelihood (ML)
or maximum a posteriori (MAP) criterion may concentrate modeling re-
sources on typical data from each class rather than on parts of the distri-
bution close to the required decision boundary. Generative models trained
on each group separately may also expend the resources modeling aspects
of the data common to all classes rather than aspects that distinguish the
classes (Druck, Pal, Zhu, & McCallum, 2007; Jaakkola, Meila, & Jebara,
1999). Nevertheless, generative models have advantages over discrimina-
tive models. They make it easy to incorporate prior knowledge, are better
at dealing with missing data than discriminative methods, and classifiers
based on them may be less prone to overfitting (Ng & Jordan, 2002; Holub,
Welling, & Perona, 2005). Moreover, generative models may contain use-
ful information about the group distribution that is hard to capture with
simple discriminative models. As we showed in section 3.3, mixed-effect
models trained on the normal and impaired groups separately manifest the
difference between the two populations, whereas there is no simple way to
do so with a discriminative model.
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It is now common practice to take advantage of both types of models,
combining generative and discriminative approaches to construct classi-
fiers. In section 4.1, we showed that linear mixed-effect models are a good
fit for our longitudinal data, modeling both overall population behavior and
individual variations. We will show in section 5 that the mixed-effect model
can also be used in feature extraction for discriminative models. Following
that, in section 6, we present the performance of discriminative models with
distinct feature extraction routines we developed for longitudinal data.

4.5 Optimizing ROC Curves. With a likelihood ratio test, we can get
an optimal ROC simply by sweeping the threshold in the test. If the group
distributions are accurately modeled, an optimal classification decision will
follow from the likelihood ratio test in equation 4.5 no matter the value of
the misclassification costs {CN, CI }.

Things are more involved for discriminative methods such as the SVM,
where we model the decision boundary instead of the group distribution.
Here, the parameters in the classifiers are tuned for one particular value
of the misclassification costs, called the design point. All the parameters
(rather than just the threshold) may need to be changed to obtain an op-
timal decision boundary as the misclassification costs change. One can
still produce an ROC curve by varying only the threshold of the classifier,
but this curve may not be optimal; that is, one might be able to do bet-
ter by changing the threshold and the other parameters determining the
boundary.

With arbitrarily large amounts of training samples and fitting time, we
could construct an optimal ROC curve by training a new classifier for each
point on the curve (one design point optimized for each value of the false
alarm rate). In practice, one can train a small number of classifiers, each at a
different design point, and build the ROC by assigning a region of the false
alarm axis to each classifier. That is, we can improve the ROC relative to
that based on a single classifier trained at a specific design point with only
the threshold left free to vary, by concatenating segments of ROCs from
different classifiers. Those trained with small CI

CN
are assigned to the region

of the small false alarm rate, and those trained with large CI
CN

are assigned
to the region of the large false alarm. We do this as follows:

1. Train classifiers with several pairs (CN, CI ), and for each classifier,
obtain its ROC curve by varying the threshold h. In the data reported
here, we consider only two settings: CN = 10, CI = 10, and CN =
10, CI = 20.

2. For each classifier, identify the regime of the false alarm rate in which
it performs the best and keep the segment of ROC curve for that
regime. Here, since we use only two cost settings, we divide the false
alarm axis into two pieces.

3. Concatenate the curve segments from step 2 into a complete curve.
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Figure 4: Optimization of the ROC curve over two regions. (Left) The solid
boxes indicate the ROC of the classifier trained at CI = CN = 10, and the white
boxes indicate the ROC of the classifier trained at CI = 20, CN = 10. (Right) The
solid black line is the composite ROC curve.

A simple example is given in the right panel of Figure 4, in which we
concatenate the ROCs for two classifiers shown in the left panel.

5 Improved Fisher Kernels

5.1 Fisher Kernel. The Fisher kernel (Jaakkola & Haussler, 1998) pro-
vides a way to extract features from a generative model for use in a discrim-
inative classifier. For any θ -parameterized model p(x; θ ), the Fisher kernel
between two points xi and x j is

K (xi , x j ) = (∇θ log p(xi ; θ ))T I−1 ∇θ log p(x j ; θ ), (5.1)

where I is the Fisher information matrix with (n, m) element:

In,m =
∫

x

∂ log p(x; θ )
∂θn

∂ log p(x; θ )
∂θm

p(x|θ ) dx. (5.2)

The Fisher kernel entry K (xi , x j ) is the inner product of the gradient
∇θp(x; θ ) at xi with that at x j , with the Fisher information I as metric.
On the manifold of models, the kernel is a scalar invariant, that is, invariant
under change of coordinates θ . Jaakkola and Haussler (1998) show that lo-
gistic regression with the Fisher kernel returns a classification result at least
as good as the likelihood ratio test based on the generative model.
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When the data are sequences with differing lengths, and possibly differ-
ing sampling times (as for us), the model needs to give the distribution over
the sample lengths and times in order to calculate the Fisher information
in equation 5.2. Those distributions are not available.8 In such cases, it is
common to replace the Fisher information with the identity matrix, leaving
the kernel

K (xi , x j ) = (∇θ log p(xi |θ ))T ∇θ log p(x j |θ ). (5.3)

Indeed, this suggestion was made in the original introduction of the Fisher
kernel (Jaakkola, Diekhaus, & Haussler, 1999), and it is followed by several
researchers (Moreno & Rifkin, 2000; Druck et al., 2007).

This ad hoc simplification raises two problems. First, it singles out the
original coordinates θ as special since the metric is defined to be the identity
in those coordinates. Further, if the identity matrix is kept as the metric after
a coordinate change θ → θ ′, the invariance of the kernel is ruined. This
is a significant issue: the particular coordinate system (parameterization)
used to describe the distribution is immaterial. Furthermore, using the
identity matrix as a metric discards the proper weighting of the features
(Fisher scores) provided by the Fisher information. In our case, discarding
this weighting and using the identity matrix leads to reduced classifier
performance when the kernel is applied in an SVM.9

For us, given the time series {ti , yi }, the Fisher score is

φyi = ∇M̃ log p(yi |ti ,M̃).

Due to the difference between the individual observation times, without a
distribution on the ti , we cannot calculate the Fisher information matrix as
defined in equation 5.2. As discussed above, usually this problem is circum-
vented by ad hoc replacing the Fisher information matrix with the identity
matrix. This choice is not suitable for us since in mixed-effect models, some
parameters can have a vastly different influence on the distribution than
others do and the identity metric does not suitably account for this. For our
linear mixed-effect models with polynomials as basis functions, the Fisher
score will be dominated by the entry associated with the slope and higher-
order term. Instead of reweighting the Fisher score entries based on some

8While the distribution over sequence lengths could be estimated, data are often
too sparse. Certainly for us, the data are far too sparse to estimate the required joint
distribution of sequence lengths and sampling times.

9Jaakkola and Haussler (1999) show that for probabilistic kernel regression, the prob-
lem does not arise when one has unlimited training samples. However for other applica-
tion of this kernel design, specifically the widely used support vector machine (Vapnik,
1998), this difference cannot be neglected.
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heuristic, we propose a principled extension to the Fisher kernel that allows
the proper calculation of the information metric.

Our kernel design is based on the generative hierarchy of the mixed-
effect models. In this model, the latent variables giving group membership
zi and regression parameters γ i are drawn from a common distribution
(that we fit by maximum likelihood). After that, the sampling times ti are
drawn at the last step (and we lack distributions for them).

The key idea is to build a Fisher kernel with a proper metric for the
latent variables and then project this kernel into the observation space to
obtain a kernel between different sequences. We use vi to denote the latent
variables for individual i and K (vi , v j ) for the Fisher kernel between vi and
v j . The kernel for yi and y j is defined as the expectation of K (vi , v j ) given
the observation yi and y j :

K (yi , y j ) = E(K (vi , v j )| yi , y j ; ti , t j ,M̃) (5.4)

=
∫∫

K (vi , v j )p(vi | yi ; ti ,M̃)p(v j | y j ; t j ,M̃)dvi dv j . (5.5)

5.2 Possible Design Strategies. Based on the particular choice of latent
variable v and the consequent kernel form for K (vi , v j ), we have several
possible design strategies that we make explicit below. This extension to
the Fisher kernel enables us to deal with time series with unequal length
and differing sampling intervals. This appears to be a novel construction.

5.2.1 Design A. For this design, we take {γ i } as the latent variable and
marginalize out latent variable {zi }. That is, we consider each individual’s
regression model parameters γ to be drawn from the mixture of gaussian
distributions,

p(γ |M̃) = π0 p(γ ; α0, D0) + π1 p(γ ; α1, D1) ≡ p(γ ; �̃),

where �̃ = {π0, α0, D0, π1, α1, D1} are the parameters of the corresponding
gaussian mixture model, and p(γ ;αm, Dm) (m = 0, 1) is simply a gaussian
distribution on γ with mean αm and covariance Dm. This generative process
is similar to that in section 3.4 but with the latent variable zi marginalized
out.10

The Fisher kernel for γ is

K (γ i , γ j ) = (∇�̃ log p(γ i |�̃))T (Iγ )−1∇�̃ log p(γ i |�̃), (5.6)

10Strictly speaking, we cannot integrate out zi at this step since the group membership
is used later in deciding the variance of the observation noise σ 2

i . However, this is a
reasonable approximation here since the observation noise specified by M0 and M1 has
almost the same variance.
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where the Fisher score is

∇�̃ log p(γ i ; �̃)=
[
∂ log p

∂π0
;∂ log p

∂α0
;∂ log p

∂D0
;∂ log p

∂π1
;∂ log p

∂α1
; ∂ log p

∂D1

]T

,

and the Fisher information matrix Iγ is

Iγ
n,m =

∫
x

∂ log p(γ ; �̃)
∂�̃n

∂ log p(γ ; �̃)
∂�̃m

p(γ |�̃) dγ. (5.7)

Once K (γ i , γ j ) is obtained, we can define the kernel between yi and y j as
the expectation of K (γ i , γ j ) given yi and y j :

K (yi , y j ) = E(K (γ i , γ j )| yi , y j ; ti , t j ,M̃)

=
∫ ∫

K (γ i , γ j )p(γ i |yi ; ti ,M̃)p(γ j |y j ; t j ,M̃) dγ i dγ j

=
(∫

∇�̃ log p(γ i |�̃)p(γ i | yi ; ti ,M̃) dγ i )T (Iγ )−1

×
∫

∇�̃ log p(γ j |�̃)p(γ j | y j ; t jM̃
)

dγ j . (5.8)

The drawback of this design is that the integrals required to evaluate Ir and∫
∇�̃ log p(γ j |�̃)p(γ j | y j ; t jM̃) dγ j

are generally not tractable. In our experiments, we estimated the integrals
by Monte Carlo sampling (Chen, Shao, & Ibrahim, 2000).

5.2.2 Design B. For this design, we use γ i and zi jointly as latent variables.
The probability model is

p(zi , γ i ; �̃) = πzi p(γi ;αzi , Dzi ),

where �̃ is the same as in design A.
The Fisher score is

∇�̃ log p(zi , γ i ; �̃)=
[
∂ log p

∂π0
;∂ log p

∂α0
;∂ log p

∂D0
;∂ log

∂π1
;∂ log p

∂α1
;∂ log p

∂D1

]T

,

and the Fisher kernel for the joint variable (γ i , zi ) is

K ((zi , γ i ), (z j , γ j ))= (∇�̃ log p(γ i |�̃))T (Iz,γ )−1∇�̃ log p(γ i |�̃) , (5.9)
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where Iz,γ is the Fisher information matrix. The kernel for yi and y j is
defined similarly to that in design A:

K
(
yi , y j )= Ezi ,γ i ,z j ,γ j

(
K
((

zi , γ i), (z j , γ j ))| yi , y j ; ti , t jM̃
)

=
∫ ∫ ∑

zi

∑
z j

K
((

zi , γ i ), (z j , γ j ))p
(
zi , γ i | yi ; ti ,M̃

)
×p
(
z j , γ j | y j ; t j ,M̃

)
dγ i dγ j (5.10)

This design is related to the marginalized kernel proposed by Tsuda, Kin,
and Asai (2002). Their kernel also uses a distribution with discrete latent
variable h (indicating the generating component) and observable x, which
form a complete variable x = (h, x). They define the kernel for observables
xi and x j as

K (xi , x j ) =
∑

hi

∑
h j

P(hi |xi )P(h j |x j )K (xi , x j ),

where K (xi , x j ) is the joint kernel for complete variables. The latter takes
the form

K (xi , x j ) = δ(hi , h j )Khi (xi , x j ), (5.11)

where Khi (xi , x j ) is the kernel defined for the hi component generative
model. It is clear from equation 5.11 that K (xi , x j ) is 0 if xi and x j are gen-
erated from different component models (i.e., hi �= h j ); otherwise, it takes
the value of kernel defined for the mth component model if hi = h j = m.

As an alternative to equation 5.9, we can define a joint kernel for (zi , γ i )
similar to Tsuda’s marginalized kernel with

K̃ ((zi , γ i ), (z j , γ j )) = Kzi (γ i , γ j )δ(zi , z j ), (5.12)

where Km(γ i , γ j ) is the Fisher kernel between γ i and γ j with the mth
component in mixture �̃ as the generative model:

Km(γ i , γ j ) = (∇�m log p(γ i ;αm, Dm))T I−1
m ∇�m log p(γ i ;αm, Dm).

(5.13)

Clearly the kernel between (zi , γ i ) and (z j , γ j ) is nonzero only if they are
drawn from the same component mixed-effect model. Again we define the
kernel between yi and y j as

K̃ (yi , y j ) = Ezi ,γ i ,z j ,γ j (K̃ ((zi , γ i ), (z j , γ j ))| yi , y j ; ti , t j ,M̃). (5.14)
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The kernels K ((zi , γ i ), (z j , γ j )) from equation 5.9 and K̃ ((zi , γ i ), (z j , γ j )) in
equation 5.12 are related by

K ((zi , γ i ), (z j , γ j )) = 1
πzi

K̃ ((zi , γ i ), (z j , γ j )) + 1
πzi

δ(zi , z j ).

A full derivation is in appendix A.

5.2.3 Design C. We can also base the kernel design on one mixed-effect
model component instead on the mixture. Equivalently, we assume that the
mixture model contains only one component in design A or B.

For the mixed-effect model for the group indexed m, the Fisher score for
the ith individual,

∇�m log p(γ i ;�m),

describes how the log probability p(γ i ;�m) responds to the change of
mixed-effect model parameters �m. This is a valid feature for classifica-
tion since the likelihood of γi for individuals from different groups is likely
to have a different response to the change of parameters �m. The kernel
between γ i and γ j is same as the one defined in equation 5.13 (design B):

Km(γ i , γ j ) = (∇�m log p(γ i ;αm, Dm))T I−1
m ∇�m log p(γ i ;αm, Dm),

m = 0, 1.

The kernel for yi and y j is

K (yi , y j ) = E(K (γ i , γ j )| yi , y j ; ti , t j ,Mm)

=
∫ ∫

K (γ i , γ j )p(γ i |yi ; ti ,Mm)p(γ j |y j ; t j ,Mm)dγ i dγ j

=
(∫

∇�̃ log p(γ i |�̃)p(γ i | yi ; ti ,Mm) dγ i
)T

I−1
m

×
∫

∇�̃ log p(γ j |�̃)p(γ j | y j ; t j ,Mm) dγ j . (5.15)

We can use the mixed-effect model trained on either the impaired group
or the normal group. Not surprisingly, the mixed-effect models fit on the
different groups describe the data quite differently with consequently dif-
ferent kernels. Our experiments show that the kernel based on the impaired
group is significantly better for classification than the one based on the nor-
mal group. Therefore, the results we show for design C are based on the
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Figure 5: (Upper row) Design A versus design B. (Lower row) Design A versus
design C. The number in the parentheses is the p-value (Z -test) for the null
hypothesis: the AUC of design A is the same as the AUC of design B (or C).

impaired group model. This kernel is essentially the special case of design
A or B with π0 = 1 and π1 = 0.

5.3 Empirical Comparison Between Kernels. We tested the three novel
Fisher kernel designs on the four motor behaviors, gait speed, seconds, tap-
pingD, and tappingN, and the two neuropsychological tests, delayed recall
and logical memory II, with the mixed-effect models for each measure-
ment trained separately. We use order 1 polynomials for the mixed-effect
models.11 For each measurement, the constructed kernels are used in sup-
port vector machines for classification. We compare the performance of
two classifiers by comparing their respective ROC curves (see section 4.2).
The ROC curves are estimated by a leave-one-out cross-validation and the
optimization procedure described in section 4.5.

We compare designs A and B in the upper row of Figure 5. We show only
the steps, tappingD, and delayed recall data. The two kernels have very
comparable performance except on the tappingD time series, for which
design A is slightly better than design B (at significance p = 0.136). We

11The order 2 polynomials (quadratic) model yields worse classification results than
order 1 polynomials, and the result is omitted.
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compare designs A and C in the lower row of Figure 5, finding that design
C yields slightly better ROC curves than design A on the motor behaviors
and comparable performance on delayed recall. (On gait speed, not shown,
design C outperformed design A at p = 0.158.)

6 Kernels Without a Generative Model

In this section, we discuss two other feature extraction routines that are not
based on generative models. The first models each subject with a polynomial
curve and uses the least-square fitting coefficients as the feature vector. The
second takes a nonparametric approach, fitting the observations of each
subject with a smooth curve, and uses it as the summarizing feature for the
classification afterward.

6.1 Parametric Feature Extraction. We summarize each individual time
series with the least-squares fit coefficients for a d-degree polynomial re-
gression model. That is, for subject i , the d + 1-dimensional feature pi is

pi = arg min
p

Ni∑
j=1

(
d∑

l=0

pl (ti
j )

l − yi
j

)2

, (6.1)

with p = [p0, . . . , pd ]T . We consider only d = 1 since a substantial propor-
tion of subjects have no more than five observations, not enough for a
reliable fitting of a polynomial with d ≥ 2. We normalize the entries in pi

by the standard deviation and then use them as input to a support vector
machine,

p̂i
l = pi

l√
1

k−1

∑
j (p j

l − pl )2
, l = 0, . . . , d, (6.2)

with pl = 1
k

∑k
i=1 pi

l . We use an RBF kernel based on the squared Euclidean
distance,

Ki j = exp
(

−|| p̂i − p̂ j ||22
2s2

)
, (6.3)

where p̂i = [ p̂i
0, . . . , p̂i

d ]T , and the radius s is chosen using leave-one-out
cross-validation. In the remainder of the letter, we refer to the matrix K
defined in equation 6.3 as the least squares (LSQ) kernel. (Note that the
feature defined in equations 6.1 and 6.2 be used in other classifiers such as
multilayer perceptron; Bishop, 1995.)
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6.2 Nonparametric Feature Extraction. We can extend the feature ex-
traction described in section 6.1 to a nonparametric form as follows. The
model is based on gaussian process regression (Rasmussen & Williams,
2006) and the reproducing kernel Hilbert space (RKHS). We assume that
the observations for each individual are generated from an independent
gaussian process indexed by age. The nth observation for subject i is mod-
eled as

yi
n = f i(ti

n

)+ εi
n, n = 1, 2, . . . , Ni ,

where f i is a gaussian process and εi
n is a white observation noise with

standard deviation σ . We further assume that the f i all have the same
covariance function, denoted C . We can then summarize each individual
by standard kernel regression (Rasmussen & Williams, 2006),

f̂
i
(t) = E( f (t)|yi ; ti , C, σ ) = C(t, ti )(C(ti , ti ) + σ 2

I)−1yi ,

where C(ti , ti ) is the matrix with element (n, m) set to C(ti
n, ti

m).
The difference between two individuals can be measured by the distance

between the two summarizing curves in a Hilbert space,

di j = || f̂
i − f̂

j||2H, (6.4)

where || · ||H is the norm in Hilbert space H. 12 When H is chosen to be the
RKHS induced by the covariance function C , this distance measure is

d(i, j) = || f̂
i − f̂

j||2H
= ||C(t, ti )(C(ti , ti ) + σ 2

I)−1yi − C(t, t j )(C(t j , t j ) + σ 2
I)−1y j ||2H

= < C(t, ti )vi − C(t, t j )v j , C(t, ti )vi − C(t, t j )v j >H, (6.5)

where vi = (C(ti , ti ) + σ 2
I)−1yi . Since

< C(tn, t), C(tm, t) >H= C(tn, tm),

the distance measurement can be simplified to

di j = (vi )T C(ti , ti )vi + (v j )T C(ti , ti )v j − 2(vi )T C(ti , t j )v j . (6.6)

12One might want to use E(|| f i − f j ||2H|ti , yi , t j , y j ) as the measure of distance. Unfor-
tunately, this expectation goes to infinity as any random sample f from a gaussian process
with C as the covariance function will have || f ||H = ∞ with probability 1 (Seeger, 2004).
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Figure 6: Gaussian process kernel versus LSQ kernel. The number in the paren-
theses is the p-value of the Z -test for the null hypothesis: the AUC of the gaus-
sian process kernel is the same as the AUC of the LSQ kernel.

The distance di j can be interpreted as the Bregman divergence on f with
|| f ||2H as the seed functional (Frigyik, Srivastava, & Gupta, 2006).

Based on this distance, we use the kernel

Ki j = exp
(

− di j

2s2

)
, (6.7)

where the kernel width s is chosen using leave-one-out cross-validation.
The matrix K defined in equation 6.6 is a Mercer kernel, simply because
it can be rewritten as an RBF kernel after we embed the distance di j into
an N-dimensional Euclidean space with N = ∑Ni

i=1. In the remainder of
the letter, we refer to this kernel as the gaussian process kernel. To get
such a kernel, we need to specify the covariance function C and width s
used in equation 6.6. In this letter, we use a gaussian covariance function
C(t, t′) = exp(− (t−t′)2

2s2
c

), where sc is chosen to be the average time interval
between two adjacent observations, averaged over all subjects.

6.3 Comparison Between Parametric and Nonparametric Feature
Extraction. We compare classifiers built on the parametric and nonpara-
metric kernels in Figure 6. For each design, we set the radius s to maximize
the classifier performance at the operating point using leave-one-out
cross-validation. The ROC curves are in Figure 6. The gaussian process
kernel (GPK) yields a slightly larger AUC than the LSQ kernel (LSQK), but
the difference is significant (at p < 0.05) only for the tappingN. On delayed
recall, the two are comparable, and there is a slight advantage (at p = 0.16)
on gait speed.
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7 Comparing Generative and Discriminative Models

Finally, we compare the best performer in each of the three categories of
methods:

� For the likelihood ratio tests (sections 4.1–4.3), we choose the one
based on the mixed-effect model, since it is slightly better than the
one based on the simplified model that assumes no random effect.

� For the discriminative models based on the extensions to the Fisher
kernel (see section 5), we pick design C. It is consistently better than
designs A and B on all six measurements, although the difference is
not statistically significant.

� For the feature extraction models independent of the mixed-effect
model (section 6), we pick the gaussian process kernels since it per-
forms better than the LSQ kernel on all six measurements, although
the difference is not statistically significant (except on tappingN).

In Figure 7 we compare the three best performers for all six measures. It
shows that both discriminative models are better than the likelihood ratio
test on the four motor behaviors. On the two psychometric tests, the like-
lihood ratio test and the kernel-based classifiers have similar performance.
Among the discriminative models applied to the motor behaviors, the one
based on our Fisher kernel extension (design C) outperforms the likelihood
ratio classifiers at p < 0.08. The superiority of the Gaussian process kernel
relative to the likelihood ratio classifiers is not as strong (p ≥ 0.16), except
on tappingN, for which the differences are significant at p < 0.05. The AUCs
of the best performers on all six measures are also listed in Table 2. It shows
that the Fisher kernel extension is overall the most reliable since it is the best
on four of the six measurements and achieves performance comparable to
the best on the rest two measurements.

8 Discussion and Conclusion

We presented several models for predicting cognitive decline based on
clinical recordings of motor and psychometric tests. We view these classi-
fication studies as an initial step toward a more sophisticated system that
can estimate the risk of the onset of MCI at a given age.

We developed and compared two categories of methods: likelihood-ratio
tests based on generative models and discriminative models. We adopt the
mixed-effect model for its ability to model both the population behavior and
the individual’s deviation from the population. In section 3 we discussed
the models in detail and showed that these models capture the differences
between the normal and impaired groups. In section 4, we explored the
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Figure 7: The comparison between Fisher kernel extension (design C), gaussian
process kernel, and likelihood ratio classifiers. (mixed-effect model). For each
measurement, the first number in the parentheses is the p-value (Z-test) for the
null hypothesis “the AUC of design C is same as the AUC of likelihood ratio
classifier,” and the second number is the p-value (Z-test) for the null hypothesis
“the AUC of gaussian process kernel is the same as the AUC of likelihood ratio
classifier.”

Table 2: AUCs of the Model with the Best Performance on Six Measurements.

Steps Gait speed Logical memory II

0.7333 (design C) 0.7674 (design C) 0.7945 (design C)

TappingD TappingN Delayed Recall

0.7990 (design C) 0.7360 (GPK) 0.8124 (LKHD)

discriminative capability of the mixed-effect model, building a likelihood
ratio classifier from the mixed-effect models. This yields reasonable classi-
fication results on four motor behaviors and has excellent performance on
two neuropsychological tests.

For use in SVM classifiers, we developed two types of kernels based on
the longitudinal data. The first type exploits the latent structure of mixed-
effect models to extend the Fisher kernel construction so it deals properly
with time series of unequal length and variable sampling intervals.
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The key development is to write a kernel in the latent variables (which
are of the same dimension for all observed sequences) using the proper
metric and then project this latent-variable kernel into the space of observa-
tions. The construction allows direct computation of the Fisher information.
This is an improvement over the usual ad hoc replacement of the Fisher in-
formation with an identity matrix for sequences with varying length. Using
the Fisher information as the metric provides proper scaling of the Fisher
scores and retains the invariance of the kernel under reparameterization
of the generative model present in the formal development. The second
type of kernel uses feature extraction routines not based in the mixed-effect
models. We constructed both parametric and nonparametric (gaussian pro-
cess) regression curves for each individual time series. The nonparametric
approach gives a new distance measure potentially useful for a wide range
of time-series applications. Our experiments show that the discriminative
methods yield significantly better classification performance than likeli-
hood ratio tests on motor behaviors, and are comparable to them on the
neuropsychological tests.

Several problems remain unsolved. First, our classification algorithms
do not give an estimation of the risk of decline at different ages. One
possible remedy is to combine traditional survival analysis (Klein &
Moeschberger, 2003) with the classification techniques we developed
in this letter. Second, we have not found an effective way to fuse the
information from the different time series. Obviously we can do so with
a multivariate output mixed-effect model that describes several types of
observations with one model. Unfortunately, our preliminary results show
that this does not capture enough correlation between different types of
observations to improve the classification. Another direction is to build
a separate kernel for each type of observation and combine them in a
discriminator. Methods like kernel-target alignment (Cristianini, Shawe-
Taylor, Elisseeff, & Kandola, 2002) or kernel extrapolation (Vishwanathan,
Borgwardt, Guttman, & Smola, 2006) provide interesting choices. We will
explore these ideas in our future research.

Appendix: Two Kernels in Design B

The Fisher score is the gradient of the log likelihood

φ�̃(zi , γ i ) ≡ ∇�̃ log p(zi , γ i ; �̃)

=
[

∂ log p
∂π0

; ∂ log p
∂α0

; ∂ log p
∂D0

; ∂ log
∂π1

; ∂ log p
∂α1

; ∂ log p
∂D1

]T

,

and the Fisher kernel for the joint variable (γ i , zi ) is defined as

K ((zi , γ i ), (z j , γ j )) = (∇�̃ log p(γ i |�̃))T (Iz,γ )−1∇�̃ log p(γ i |�̃), (A.1)
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where Iz,γ is the Fisher information matrix. In equation A.1, we have for
m = 0, 1

∂ log p(zi , γ i ; �̃)
∂πm

= δ(zi , m)
1

πm
,

∂ log p(zi , γ i ; �̃)
∂αm

= δ(zi , m)D−1
m (αm − γ i ),

∂ log p(zi , γ i ; �̃)
∂Dm

= δ(zi , m)

{
− 1

2
D−1

m + 1
2

D−1
m (αm − γ i )(αm − γ i )T D−1

m

}
.

Note that

∂ log p(zi , γ i ; �̃)
∂αm

= δ(zi , m)
∂ log p(γ i ;�m)

∂αm
, (A.2)

∂ log p(zi , γ i ; �̃)
∂Dm

= δ(zi , m)
∂ log p(γ i ;�m)

∂Dm
. (A.3)

Denoting �m = {αm, Dm} m = 0, 1, equations A.2 and A.3 can be summa-
rized as

∂ log p(zi , γ i ; �̃)
∂�m

= δ(zi , m)
∂ log p(γ i ;�m)

∂�m
. (A.4)

The Fisher information matrix Iz,γ is defined as

Iz,γ = Ezi ,γ i (φT
�̃

(zi , γ i )φ�̃(zi , γ i )|�̃) (A.5)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E
(

∂ log p
∂π0

(
∂ log p

∂π0

)T
|�̃
)

E
(

∂ log p
∂π0

(
∂ log p
∂�0

)T
|�̃
)

E
(

∂ log p
∂�0

(
∂ log p

∂π0

)T
|�̃
)

E
(

∂ log p
∂�0

(
∂ log p
∂�0

)T
|�̃
)

E
(

∂ log p
∂π1

(
∂ log p

∂π0

)T
|�̃
)

E
(

∂ log p
∂π1

(
∂ log p
∂�0

)T
|�̃
)

E
(

∂ log p
∂�1

(
∂ log p

∂π0

)T
|�̃
)

E
(

∂ log p
∂�1

(
∂ log p
∂�0

)T
|�̃
)

E
(

∂ log p
∂π0

(
∂ log p

∂π1

)T
|�̃
)

E
(

∂ log p
∂π0

(
∂ log p
∂�1

)T
|�̃
)

E
(

∂ log p
∂�0

(
∂ log p

∂π1

)T
|�̃
)

E
(

∂ log p
∂�0

(
∂ log p
∂�1

)T
|�̃
)

E
(

∂ log p
∂π1

(
∂ log p

∂π1

)T
|�̃
)

E
(

∂ log p
∂π1

(
∂ log p
∂�1

)T
|�̃
)

E
(

∂ log p
∂�1

(
∂ log p

∂π1

)T
|�̃
)

E
(

∂ log p
∂�1

(
∂ log p
∂�1

)T
|�̃
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.6)
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It is straightforward to verify that for m = 0, 1

Ezi ,γ i

(
∂ log p(zi , γ i ; �̃)

∂πm

(
∂ log p(zi , γ i ; �̃)

∂πm

)T
∣∣∣∣∣�̃
)

= 1
πm

,

Ezi ,γ i

(
∂ log p(zi , γ i ; �̃)

∂πm

(
∂ log p(zi , γ i ; �̃)

∂�m

)T
∣∣∣∣∣�̃
)

= 0,

Ezi ,γ i

(
∂ log p(zi , γ i ; �̃)

∂πm

(
∂ log p(zi , γ i ; �̃)

∂π1−m

)T
∣∣∣∣∣�̃
)

= 0,

Ezi ,γ i

(
∂ log p(zi , γ i ; �̃)

∂πm

(
∂ log p(zi , γ i ; �̃)

∂�1−m

)T
∣∣∣∣∣�̃
)

= 0,

Ezi ,γ i

(
∂ log p(zi , γ i ; �̃)

∂�m

(
∂ log p(zi , γ i ; �̃)

∂�m

)T
∣∣∣∣∣�̃
)

= πm Ezi ,γ i ×
(

∂ log p(γ i ;�m)
∂�m

(
∂ log p(γ i ;�m)

∂�m

)T
∣∣∣∣∣�m

)
,

from which equation A.6 can be simplified as

Iz,γ =

⎡⎢⎢⎢⎢⎢⎢⎣

1
π0

0 0 0

0 π0 E
(

∂ log p
∂�0

(
∂ log p
∂�0

)T
|�0

)
0 0

0 0 1
π1

0

0 0 0 π1 E
(

∂ log p
∂�1

(
∂ log p
∂�1

)T
|�1

)

⎤⎥⎥⎥⎥⎥⎥⎦ .

(A.7)

It is not hard to see from here that

K ((zi , γ i ), (z j , γ j )) = (∇�̃ log p(γ i |�̃))T (Iz,γ )−1∇�̃ log p(γ i |�̃)

= 1
πzi

δ(zi , z j )(1 + Kzi (γ i , γ j ))

= 1
πzi

K̃ ((zi , γ i ), (z j , γ j )) + 1
πzi

δ(zi , z j ).



2418 Z. Lu, T. Leen, and J. Kaye

Acknowledgments

This work was supported by Intel Corp. under the OHSU BAIC award, by
NSF under grant IIS-0812687, by the National Institutes of Health, National
Institute of Aging grants P30-AG008017, P30-AG024978, and the Depart-
ment of Veterans Affairs. We thank Milar Moore and Robin Guariglia of
the Layton Aging and Alzheimer’s Disease Center for help with data from
the Oregon Brain Aging Study. We thank Misha Pavel, Tamara Hayes, and
Nichole Carlson for helpful discussion. We thank the anonymous reviewer
for comments helping to clarify the text.

References

Bishop, C. M. (1995). Neural networks for pattern recognition. New York: Oxford
University Press.

Boise, L., Morgan, D., Kaye, J., & Camicioli, R. (1999). Delays in the diagnosis
of dementia: Perspectives of family caregivers. American Journal of Alzheimer’s
Disease and Other Dementias, 14, 20–26.

Camicioli, R., Howieson, D., Oken, B., Sexton, G., & Kaye, J. (1998). Motor slowing
precedes cognitive impairment in the oldest old. Neurology, 50, 1496–1498.

Chen, M.-H., Shao, Q.-M., & Ibrahim, J. G. (2000). Monte Carlo methods in Bayesian
computation. New York: Springer.

Chen, P., Ratcliff, G., Phil, D., Belle, S., Cauley, J., Kosky, S. D., et al. (2000). Cogni-
tive tests that best discriminate between presymptomatic and those who remain
nondemented. Neurology, 55, 1847–1853.

Cristianini, N., Shawe-Taylor, J., Elisseeff, A., & Kandola, J. (2002). On kernel-target
alignment. In T. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural
information processing systems, 14 (pp. 367–373). Cambridge, MA: MIT Press.

Demidenko, E. (2004). Mixed models, theory and applications. Hoboken, NJ: Wiley.
Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete

data via the EM algorithm. J. Royal Statist. Soc., B39, 1–39.
Druck, G., Pal, C., Zhu, X., & McCallum, A. (2007). Semi-supervised classification

with hybrid generative/discriminative methods. In Conference on Knowledge Dis-
covery and Data Mining (pp. 280–289). New York: ACM.

Frigyik, B., Srivastava, S., & Gupta, M. (2006). Functional Bregman divergence and
Bayesian estimation of distributions. arXiv:cs/0611123.

Green, M., Kaye, J., & Ball, M. (2000). The Oregon Brain Aging Study: Neu-
ropathology accompanying healthy aging in the oldest old. Neurology, 54(1), 105–
113.

Guo, W. (2002). Functional mixed effects models. Biometrics, 58, 121–128.
Gwyther, L. (2000). Family issues in dementia: Finding a new normal. Neurologic

Clinics, 18, 993–1010.
Holub, A., Welling, M., & Perona, P. (2005). Combining generative models and

Fisher kernels for object recognition. In International Conference on Computer Vision
(pp. 136–143). Piscataway, NJ: IEEE.



Kernels for Longitudinal Data 2419

Howieson, D., Dame, A., Camicioli, R., Sexton, G., Payami, H., & Kaye, J. (1997).
Cognitive markers preceding Alzheimer’s dementia in the healthy oldest old. J.
Am. Geriatr. Soc., 45, 584–589.

Jaakkola, T., Diekhaus, M., & Haussler, D. (1999). Using the Fisher kernel method to
detect remote protein homologies. In Proc. 7th Intell. Sys. Mol. Biol. (pp. 149–158).
Cambridge, MA: AAAI Press.

Jaakkola, T., & Haussler, D. (1998). Exploiting generative models in discriminative
classifiers (Tech. Rep.). Santa Cruz: Department of Computer Science, University
of California, Santa Cruz.

Jaakkola, T., & Haussler, D. (1999). Probabilistic kernel regression models. In Pro-
ceedings of the AISTATS 1999. Society of Artificial Intelligence and Statistics.

Jaakkola, T., Meila, M., & Jebara, T. (1999). Maximum entropy discrimination (Tech.
Rep. AITR-1668). Cambridge, MA: MIT, Artificial Intelligence Laboratory.

Keogh, E., & Pazzani, M. (1998). An enhanced representation of time series which
allows fast and accurate classification, clustering and relevance feedback. In
Knowledge Discovery in Data 1998 (pp. 239–241). New York: ACM Press.

Klein, J., & Moeschberger, M. (2003). Survival analysis. New York: Springer.
Laird, N., Lange, N., & Stram, D. (1987). Random-effects models for longitudinal

data. Journal of the American Statistical Association, 82(397), 97–105.
Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data.

Biometrics, 38(4), 963–974.
Marquis, S., Moore, M., Howieson, D. B., Sexton, G., Payami, H., Kaye, J. A. et al.

(2002). Independent predictors of cognitive decline in healthy elderly persons.
Arch. Neurol., 59, 601–606.

Moreno, P., & Rifkin, R. (2000). Using the fisher kernel method for Web audio
classification. In Proceedings of the International Conference on Acoustics, Speech, and
Signal Processing (pp. 2417–2420). Piscataway, NJ: IEEE.

Ng, A., & Jordan, M. (2002). On discriminative vs. generative classifiers: A com-
parison of logistic regression and naive Bayes. In T. Dietterich, S. Becker,
& Z. Ghahramani (Eds.), Advances in neural information processing systems, 14
(pp. 287–296). Cambridge, MA: MIT Press.

Pepe, M. S. (2003). The statistical evaluation of medical tests for classification and prediction.
New York: Oxford University Press.

Rasmussen, C., & Williams, C. (2006). Gaussian processes for machine learning. Cam-
bridge, MA: MIT Press.

Richards, M., Stern, Y., & Mayeux, R. (1993). Subtle extrapyramidal signs can predict
the development of dementia in elderly individuals. Neurology, 43, 2184–2188.

Riefler, V., & Larson, E. (1988). Excess disability in demented elderly outpatients:
The rule of halves. Journal of the American Geriatrics Society, 47, 1065–1072.

Seeger, M. (2004). Gaussian process for machine learning. International Journal of
Neural System, 14(2), 69–106.

Seymore, K., McCallum, A., & Rosenfeld, R. (1999). Learning hidden Markov model
structure for information extraction. In AAAI 99 Workshop on Machine Learning
for Information Extraction. Cambridge, MA: AAAI Press.

Tsuda, K., Kin, T., & Asai, K. (2002). Marginalized kernels for biological sequences.
Bioinformatics, 1(1), 1–8.

Vapnik, V. (1998). Statistical learning theory. Hoboken, NJ: Wiley.



2420 Z. Lu, T. Leen, and J. Kaye

Verghese, J., Lipton, R., Hall, C., Kuslansky, G., Katz, M., & Buschke, H. (2002).
Abnormality of gait as a predictor of non-Alzheimer’s dementia. N. Engl. J. Med.,
347(22), 1761–1768.

Vishwanathan, S., Borgwardt, K. M., Guttman, O., & Smola, A. (2006). Kernel ex-
trapolation. Neurocomputing, 69, 721–729.

Wilson, R. S., Schneider, J. A., Bienias, J. L., Evans, D. A., & Bennett, D. A. (2003).
Parkinsonianlike signs and risk of incident Alzheimer disease in older persons.
Arch. Neurol., 60, 539–544.

Received July 6, 2010; accepted January 29, 2011.


