# Overiew of OGI Academic Programs

- **Biomedical Engineering Program**
- **Biochemistry and Molecular Biology Program**
- **Computer Science and Engineering Program**
- **Environmental Science and Engineering Program**
- **Management in Science and Technology Program**

# Academic Departments/Programs/Research/Faculty

- **Biomedical Engineering**
- **Computer Science and Electrical Engineering**
- **Environmental and Biomolecular Systems**
- **Management in Science and Technology**

# Course Descriptions

- **Biomedical Engineering**
- **Computer Science and Engineering**
- **Environmental and Biomolecular Systems**
- **Electrical Engineering**
- **General Education**
- **Applied Mathematics**
- **Management in Science and Technology**
- **Oregon Master of Software Engineering**
The problem-oriented education you receive at OHSU’s OGI School of Science & Engineering — integrating both scientific and engineering knowledge — is unlike that offered anywhere else in the U.S. Whether you are working towards a Ph.D., a Master’s, or a Certificate; towards a degree in science, engineering or management; whether you are a full-time or part-time student, being part of the diverse student body at OGI is an extraordinary opportunity to be part of something larger — while still retaining all of the advantages of pursuing your degree in an intimate, intellectually challenging environment. There has never been a more exciting time to participate in the School of Science & Engineering, and I welcome your studies here.

Ed Thompson, Ph.D.
OHSU Vice President and Dean
OGI School of Science & Engineering

The coming years promise to be very exciting ones for OHSU’s OGI School of Science & Engineering, and I invite your participation as we begin to fully capitalize on our position as the only academic health center in the nation with a fully integrated school of science and engineering.

When OGI merged with Oregon Health & Sciences University in 2001, we began engineering a healthy partnership for our students, for the businesses we work with, and for the people of the region. In the years since the merger, our research and educational programs have retooled to focus on complex problems of human and environmental health, while at the same time building collaborations with other OHSU units. In a sign of just how far we’ve come in the last five years — and a signal of how important OGI’s expertise is for breakthroughs in health and well-being — in early 2006 OHSU announced that the OGI School of Science & Engineering would be among the first to make the transition to its future Schnitzer Campus on Portland’s South Waterfront.

Though that move isn’t anticipated for about seven years (and in the meantime little will change here at OGI) it is a potent reminder of what we meant when we promised to “engineer a healthy partnership” for Oregonians. Our 2006-2012 Research Roadmap outlines seven areas where we believe that the unique expertise of OGI’s faculty members — many of whom are hybrid scientist/engineers in their own right — can make a significant contribution to solving real-world problems of human and environmental health. At the same time, our emerging educational roadmap lays out ways you can become a part of those solutions as active participants in a problem-focused, integrated approach to education. This electronic catalog will tell you everything you need to know about the kind of impact you can make by pursuing a graduate degree at OHSU’s OGI School of Science & Engineering.

As you scroll through the catalog, you may be surprised at the range of programs offered at such a small school. Since OGI’s inception more than 40 years ago, the school’s size has been one of its strengths. We offer an enviable faculty/student ratio of 1/1.8 for Ph.D. students. Despite our size, OGI awards a significant percentage of Oregon’s graduate degrees in high-technology fields, and our highly productive faculty generates approximately $10.3 million in research support each year. OGI is small enough to remain responsive to changing needs in the fields we serve, yet large enough to foster collaborative, interdisciplinary research across a broad range of human and environmental health issues.

Education at OGI is the formal responsibility of four academic departments: Biomedical Engineering, Computer Science & Electrical Engineering, Environmental & Biomolecular Systems, and Management in Science & Technology. These four departments offer six accredited Masters degrees, including: Biochemistry and Molecular Biology (BMB), Biomedical Engineering (BME), Computer Science and Engineering (CSE), Electrical Engineering (EE), Environmental Science and Engineering (ESE), and Management in Science and Technology (MST). Students can earn accredited doctoral degrees in BMB, BME, CSE, EE, and ESE. Finally, OGI also offers graduate-level certificates in Management in Science and Technology and Health Care Management.

Ed Thompson, Ph.D.
OHSU Vice President and Dean
OGI School of Science & Engineering
ACADEMIC CALENDAR 2006 | 2007

**FALL QUARTER 2006**

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 7</td>
<td>Registration begins for Fall Quarter</td>
</tr>
<tr>
<td>September 18-22</td>
<td>New-student orientation week</td>
</tr>
<tr>
<td>September 24*</td>
<td>Last day to register without late fees</td>
</tr>
<tr>
<td>September 25</td>
<td>Fall Quarter Instruction Begins</td>
</tr>
<tr>
<td>October 2</td>
<td>Student account balances due</td>
</tr>
<tr>
<td>October 6*</td>
<td>Last day to drop a class for 100% refund</td>
</tr>
<tr>
<td>October 20*</td>
<td>Last day to add or drop a class for 50% refund</td>
</tr>
<tr>
<td>November 13</td>
<td>Registration begins for Winter Quarter</td>
</tr>
<tr>
<td>November 23-24</td>
<td>Thanksgiving holiday (no classes, OGI offices closed)</td>
</tr>
<tr>
<td>December 4-8</td>
<td>Final exams</td>
</tr>
<tr>
<td>December 25</td>
<td>Christmas holiday (OGI offices closed)</td>
</tr>
</tbody>
</table>

**WINTER QUARTER 2007**

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 13</td>
<td>Registration begins for Winter Quarter</td>
</tr>
<tr>
<td>January 1</td>
<td>New Year’s holiday (OGI offices closed)</td>
</tr>
<tr>
<td>January 7*</td>
<td>Last day to register without late fees</td>
</tr>
<tr>
<td>January 8</td>
<td>Winter Quarter Instruction Begins</td>
</tr>
<tr>
<td>January 15</td>
<td>Martin Luther King holiday (no classes, OGI offices closed)</td>
</tr>
<tr>
<td>January 16</td>
<td>Student account balances due</td>
</tr>
<tr>
<td>January 19*</td>
<td>Last day to drop a class for 100% refund</td>
</tr>
<tr>
<td>February 2*</td>
<td>Last day to add or drop a class for 50% refund</td>
</tr>
<tr>
<td>February 12</td>
<td>Registration begins for Spring Quarter</td>
</tr>
<tr>
<td>February 19</td>
<td>President’s Day holiday (no classes, OGI offices closed)</td>
</tr>
<tr>
<td>March 20-23</td>
<td>Final exams (Monday, March 19 will be a regular class day to account for two Monday holidays earlier this quarter)</td>
</tr>
</tbody>
</table>

**SPRING QUARTER 2007**

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>February 12</td>
<td>Registration begins for Spring Quarter</td>
</tr>
<tr>
<td>April 1*</td>
<td>Last day to register without late fees</td>
</tr>
<tr>
<td>April 2</td>
<td>Spring Quarter Instruction Begins</td>
</tr>
<tr>
<td>April 9</td>
<td>Student account balances due</td>
</tr>
<tr>
<td>April 13*</td>
<td>Last day to drop a class for 100% refund</td>
</tr>
<tr>
<td>April 27*</td>
<td>Last day to add or drop a class for 50% refund</td>
</tr>
<tr>
<td>May 7</td>
<td>Registration begins for Summer Quarter</td>
</tr>
<tr>
<td>May 28</td>
<td>Memorial Day holiday (no classes, OGI offices closed)</td>
</tr>
<tr>
<td>June 8</td>
<td>Commencement</td>
</tr>
<tr>
<td>June 11-15</td>
<td>Final Exams</td>
</tr>
</tbody>
</table>

**SUMMER QUARTER 2007**

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 7</td>
<td>Registration begins for Summer Quarter</td>
</tr>
<tr>
<td>June 24*</td>
<td>Last day to register without late fees</td>
</tr>
<tr>
<td>June 25</td>
<td>Summer Quarter Instruction Begins</td>
</tr>
<tr>
<td>July 2</td>
<td>Student account balances due</td>
</tr>
<tr>
<td>July 4</td>
<td>Independence Day holiday (no classes, OGI offices closed)</td>
</tr>
<tr>
<td>July 6*</td>
<td>Last day to drop a class for 100% refund</td>
</tr>
<tr>
<td>July 20*</td>
<td>Last day to add or drop a class for 50% refund</td>
</tr>
<tr>
<td>August 6</td>
<td>Registration begins for Fall Quarter</td>
</tr>
<tr>
<td>September 3</td>
<td>Labor Day holiday (OGI offices closed)</td>
</tr>
<tr>
<td>September 4-7</td>
<td>Final exams</td>
</tr>
</tbody>
</table>

*MST Weekend and Online courses have unique late registration and add/drop deadlines. Please refer to the refund policy on page 8 for detailed information.

WELCOME

The School of Science & Engineering traces its origins to the early 1960s, when Mark Hatfield, then Oregon’s governor, and an advisory committee of industrial and educational leaders recommended creating an independent institution for graduate education and research in the Portland area. In 1963 they established the Oregon Graduate Center for Study and Research. In 1989, the center was renamed the Oregon Graduate Institute of Science and Technology.

Over the next decade, OGI awarded more than 1,000 graduate degrees, offered hundreds of continuing education classes and workshops, and pursued more than $100 million in research grants, most of them federally funded. Now in its sixth year as a school of Oregon Health & Science University (OHSU), the School of Science & Engineering continues as a premier provider of high-quality graduate science and engineering education, generating more than $10 million in research annually and with more than 250 students working full- or part-time toward master’s or Ph.D. degrees.

OHSU is a health and research university dedicated to healing, teaching and discovery. Each year, OHSU sees thousands of patients, educates nearly 2,800 students and brings in more than $260 million research dollars — a figure that has quadrupled over the past decade. More than 1,700 scientists, physicians, and engineers are working on basic and applied research projects throughout the university. Its merger with OGI has broadened the mission of the institution to encompass new research frontiers where technology can be used to solve complex problems of human and ecosystem health.

The OGI School of Science & Engineering remains committed to its historical purpose: to educate students and conduct high-quality research in science and engineering and to serve as a resource for Oregon’s high-technology industry. In 2002, with a $4 million grant from the M.J. Murdock Charitable Trust, the school established Oregon’s first graduate
Department of Biomedical Engineering. During the same time period, the school’s Department of Management in Science & Technology began offering certificates in health care management. In these and many other areas, OGI’s merger with OHSU continues to facilitate cross-disciplinary collaboration at the interface of science, engineering, health and the environment.

OGI is part of OHSU’s West Campus, which also includes the Vaccine and Gene Therapy Institute, the Neurological Sciences Institute and the Oregon National Primate Research Center. The West Campus is about 12 miles from OHSU’s central campus on Portland’s Marquam Hill. In early 2006, OGI announced a long-term strategic plan that would move the school to OHSU’s South Waterfront Schnitzer Campus in approximately seven years. Even after that move, however, the school will remain committed to providing convenient access to high-quality graduate education for Washington County-based students.

MISSION

As part of Oregon’s only comprehensive public academic health center, OGI shares with OHSU one fundamental purpose: to improve the health and well-being of people in Oregon and beyond.

Like the other schools of OHSU, OGI strives for excellence in education, research, and scholarship in a dynamic interdisciplinary environment that stimulates the spirit of inquiry, initiative, and cooperation among students, faculty, and staff. OGI accomplishes its mission by:

• Educating tomorrow’s scientists, engineers, and managers in top-tier programs that prepare them for a lifetime of learning, leadership, and contribution;
• Exploring new basic and applied research frontiers in health and biomedical sciences, environmental and biomedical engineering, and information sciences; and
• Emphasizing the creation and implementation of new knowledge and cutting-edge technologies that, wherever possible, will be translated into applications in the health and commercial sectors.

Finally, as the only school of science and engineering in the nation that is part of an academic health center, OGI is uniquely well positioned for and committed to applying advanced scientific, engineering, and computational methodologies to complex problems of human and ecosystem health.

EQUAL OPPORTUNITY

Oregon Health & Science University and the OGI School of Science & Engineering are firmly committed to a policy of affirmative action and equal opportunity. This encompasses all employment, education and patient service activities connected with OHSU. No patient, employee, student, trainee, beneficiary or potential beneficiary of the hospitals and clinics or the university shall be unlawfully discriminated against on the basis of race, color, sex, sexual orientation, religion, creed, national origin, age, marital status, disability, veteran status or another applicable basis in law.

ACCESS AND DISABILITIES SERVICES

OHSU/OGI believes that a diverse student body enhances the educational opportunities for all students and is beneficial to the graduate experience at large. Students with a documented disability or who believe they might experience a disability and would like accommodations while at OHSU/OGI are encouraged to contact the Director of the Office for Student Access. The Office for Student Access provides accommodations, information, support, advice and resources institution-wide. The Office for Student Access works in conjunction with OGI’s Program Accommodation Liaison (PAL) to ensure equal access to all the programs and services offered by the OGI School of Science & Engineering.

Graduate programs are extremely rigorous and fast-paced. Accommodations that may have worked in undergraduate programs may no longer be effective in this environment. For further assistance or information, please contact the Director of the Office for Student Access at 503-494-0082 or the OGI PAL in the Graduate Education office at 503-748-1581. All information regarding a student’s disability is kept in accordance with relevant state and federal laws.

ABOUT THIS CATALOG

This catalog is as accurate as possible as of July 1, 2006. Information contained in the catalog may be changed during the course of any academic year, including but not limited to changes in policies, fees, course offerings, course descriptions and program requirements. This document should not be construed as forming the basis of a contract.

Additional student and academic policies are listed in the OGI Student Handbook located at www.ogi.edu/graduate_edu/forms/studenthandbook.pdf.

OVERVIEW

ACADEMIC DEPARTMENTS

The OGI School of Science & Engineering has four academic departments: Biomedical Engineering (BME), Computer Science and Electrical Engineering (CSEE), Environmental and Biomolecular Systems (EBS) and Management in Science and Technology (MST).

Students benefit from cross-disciplinary research and education as faculty members take part in research projects outside their main department. This encourages the exchange of ideas across related research areas and provides the fullest use of the wide range of instrumentation available at the school.

DEGREE PROGRAMS

The OGI School of Science & Engineering offers M.S. and Ph.D. degrees in:

• Biochemistry and Molecular Biology
• Biomedical Engineering
• Computer Science and Engineering
• Electrical Engineering
• Environmental Science and Engineering
• Management in Science and Technology (M.S. degree only)

CERTIFICATE PROGRAMS

The following certificate programs are available:

Department of Management in Science & Technology

• Health Care Management
• Management in Science and Technology
STUDENTS NOT SEEKING DEGREES

Any qualified student may take courses at OGI, in a part-time capacity, without enrolling in a degree program. Up to 21 credits completed prior to matriculation (admission in a degree program), either taken at OGI or transferred from another institution, may be accepted toward degree requirements. To earn a degree from the OGI School, a student must first be formally admitted to a degree program.

ACCREDITATION

Oregon Health & Science University and the OGI School of Science & Engineering are accredited by the Northwest Commission on Colleges and Universities, an institutional accrediting body recognized by the Council for Higher Education Accreditation and/or the U.S. Department of Education. NWCCU’s address is: 8060 165th Ave. N. E, Suite 100, Redmond, WA 98052.

ADMISSIONS

ADMISSIONS REQUIREMENTS

The following requirements apply to all Masters and Ph.D. programs at the OGI School, unless otherwise indicated. Individual academic programs may have specific requirements in addition to those shown below and can be found in the department sections of this catalog.

- To apply for any degree program at the OGI School, an applicant must have previously earned a four-year bachelor’s degree, although a student may be provisionally admitted prior to that time. An international applicant with a three-year bachelor’s degree from a foreign country should have his/her academic credentials evaluated by an external credentials evaluator in order to determine equivalency to a four-year, U.S. bachelor’s degree.

- The Graduate Record Examination (GRE) may be required. See Department sections for specific requirements.

- Official transcripts from each college or university currently and previously attended. Transcripts must be in English or accompanied by a certified English translation.

- Three original letters of recommendation. The letters should attest to the student’s ability to succeed in a graduate program. Recommendation letters must be signed and preferably mailed directly from the author. If sent in by the student, the recommendation letter must be in a sealed envelope. For guidance, a recommendation form is available at www.ogi.edu/graduate_edu/forms/recommendation_letter.pdf.

ADDITIONAL REQUIREMENTS FOR INTERNATIONAL STUDENTS

To be considered for admission to the OGI School for a full course of study, international students must also provide documentation to show that they meet the following requirements:

- Evidence of adequate financial resources to pay for their OGI education and their cost of living.

- Official TOEFL scores for all applicants whose native language is not English, except for those who have earned a degree from a U.S. institution. The OGI School will accept either the paper-based test, the computer-based test or the internet-based test. Required scores for individual programs are discussed in the department sections of this catalog. For more information on the TOEFL please visit www.toefl.org.

APPLICATION PROCEDURES

For degree programs, the following items must be submitted:

- Completed OGI School of Science & Engineering application form available online at www.ogi.edu/admissions/apply. The application is valid for one year from date of submission. A separate application is needed for each program applied to.

- $65 nonrefundable application fee per application submitted.

- Official transcripts from each current and prior college or university attended. The transcripts must arrive in a sealed envelope and should be mailed directly to the Department of Graduate Education. Transcripts must be in English or accompanied by a certified English translation.

- Three letters of recommendation.

- Official GRE scores (if applicable, see Department sections). The institutional code for OGI is 4592.

- TOEFL scores (if applicable, see above).

For certificate programs, the following items must be submitted:

- Completed OGI certificate program application form available at www.ogi.edu/admissions/apply/#cert.

- $25 nonrefundable application fee, which is valid for one year and cannot be waived or deferred.

Please send transcripts and other application materials to:

Department of Graduate Education
OGI School of Science and Engineering
20000 N.W. Walker Road
Beaverton, Oregon 97006-8921
Phone: 503 748-1382
Toll-free: 800 685-2423
Fax: 503 748-1285
E-mail to: admissions@admin.ogi.edu

Due dates: For most programs, applications are considered on a year-round basis, although the majority of admissions are made for fall term. Individual programs may have specific application deadlines for consideration in the first-round of application reviews. Application deadlines, if any, are covered in the department sections of this catalog.

STUDENT VISAS

Information on student visas and other immigration services can be found on the Web site for OHSU’s Office of International Services, www.ogi.edu/admissions/immigration/.

TUITION AND FINANCES

TUITION AND FEES

For the 2006-2007 academic year, quarterly tuition and fees are as follows:
Non-degree students, Masters students and Ph.D. students:

<table>
<thead>
<tr>
<th>Credits</th>
<th>Tuition &amp; Fees</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$625</td>
</tr>
<tr>
<td>2</td>
<td>$1250</td>
</tr>
<tr>
<td>3</td>
<td>$1875</td>
</tr>
<tr>
<td>4</td>
<td>$2500</td>
</tr>
<tr>
<td>5</td>
<td>$3139</td>
</tr>
<tr>
<td>6</td>
<td>$3766</td>
</tr>
<tr>
<td>7</td>
<td>$4393</td>
</tr>
<tr>
<td>8</td>
<td>$5020</td>
</tr>
<tr>
<td>9</td>
<td>$5690</td>
</tr>
<tr>
<td>10-12</td>
<td>$625/credit (Non-degree students)</td>
</tr>
<tr>
<td></td>
<td>No additional charge for Masters and Ph.D. students.</td>
</tr>
<tr>
<td>13 +</td>
<td>$625/credit (Non-degree and Master's Students)</td>
</tr>
<tr>
<td></td>
<td>No additional charge for Ph.D. students.</td>
</tr>
</tbody>
</table>

The above tuition and fee amounts include OHSU’s activity, building, and incidental fees. These fees are mandatory and cannot be reduced for students who do not intend to use a specific resource or service.

- The International Student Fee is $30/quarter and applies to all F-1 or J-1 students.
- A lab fee of $300 per quarter applies to all MS students in the Environmental and Biomolecular Systems Department.
- The quarterly Health Insurance Fee is $644.22 and applies to all Masters and Ph.D. students registered for 9 or more credits (full-time) who have not otherwise received an approved waiver in accordance with OGI’s health insurance requirements. The Health Insurance Fee is subject to change each July 1 when the insurance plan is renewed.

DEPOSITS

Upon acceptance as a master’s student into the Biochemistry and Molecular Biology or Environmental Science and Engineering programs, applicants must pay a $100 deposit to reserve a place in the program. Deposits will be applied toward tuition and are nonrefundable.

HEALTH INSURANCE

All admitted students registered for 9 or more credits are required to either enroll in OGI’s student medical insurance or provide proof of other acceptable medical insurance coverage. The student is responsible for the full cost of OGI’s insurance coverage and may purchase additional coverage for family members. Contact the Graduate Education Department for current premium rates. Part-time students are not eligible for OGI’s student insurance. Further details about OGI’s student health insurance plans are available at www.ogi.edu/graduate_edu/students/health/.

FINANCIAL AID

Generally, entering full-time Ph.D. students are eligible for financial support through a combination of tuition scholarships, OGI scholarships, and graduate research assistantships. Offers of support are initiated by the individual academic departments. Part-time Ph.D. students may be eligible for some of the above. Partial tuition scholarships may be awarded by the school or individual academic departments to entering full-time master’s students. No additional application is required.

Student loans are available to students who qualify. Qualifications include but are not limited to: formal admissions to a master’s or Ph.D. program at the OHSU OGI School of Science & Engineering and status as either a U.S. citizen or eligible non-citizen. Also, for federal student loans, students must be enrolled for at least five credits a quarter. Financial aid application instructions and additional information are available at OHSU’s Web site at www.ohsu.edu/finaid/. To contact the OHSU Financial Aid Office call 503-494-7800 or 800-775-5460 or e-mail to: finaid@ohsu.edu.

REFUND POLICY

To receive a refund, a student must drop a course within the available timeframes listed below:

- **Quarter-long Courses:** A 100% tuition refund will be given if a student drops a quarter-long course by the end of the second week of the quarter. Dropping before the end of the fourth week of the quarter will result in a 50% refund. No refunds will be provided for dropping a course after the fourth week of the quarter. For specific dates see the OGI academic calendar.

- **MST Compressed Weekend Courses:** A 100% refund will be given if an MST weekend course is dropped by the Friday following the first weekend of class. Dropping by the Friday following the second weekend of class will result in a 50% refund. After that, there is no refund for dropping a compressed weekend course.

Online Courses: Dropping an online course by the end of the second week following the beginning of the course will result in a 100% refund. There is no 50% refund timeframe for online courses. No refund will be issued for dropping an online course after two weeks.

COURSE NUMBERS

Courses listed as 5xx/6xx are applicable to both a master’s program as well as a doctoral program. Master’s, certificate and non-degree students should register for the 5xx class and doctoral students should register for the 6xx class when available.

- **5xx** Graduate courses offered primarily in support of master’s programs. May be used towards a doctoral program as appropriate.
- **6xx** Graduate courses offered primarily in support of doctoral programs. May be used towards a master’s program as appropriate.

The following standard course numbers may be included in each program’s course offerings. Refer to the individual program for further details.

- 501/601 Master’s Non-Thesis Research/PhD Pre-qualifying Research
- 502/602 Independent Study
- 503/603 Master’s Thesis Research/PhD Dissertation Research
- 504/604 Internship
- 505/605 Reading and Conference
- 506/606 Special Topics Courses
- 507/607 Seminar
- 508/608 Workshop
- 509/609 Practicum

400-LEVEL COURSES

Occasionally, OGI will offer a 400-level course for personal or academic development. Courses designated by a 400-series number are not considered graduate level courses and will not satisfy any degree requirements. These courses will appear on the transcript.
ACADEMIC POLICIES

The following is a list of selected OGI School of Science & Engineering academic policies. For access to all OGI academic policies visit www.ogi.edu/graduate.edu/policies/

AUDITING A COURSE

OGI courses are offered for graded graduate credit hours or ungraded audit units. Students may register to audit a course on a space available basis. Students taking a course for credit have priority over students auditing a course. Audits are recorded on the student’s transcript at the discretion of the instructor, based upon a reasonable expectation of attendance and minimal participation determined by the instructor. Audits are charged at the standard tuition rate. Audit units do not count toward a student’s fulltime status. Instructors have final discretion over allowing audits of their classes and defining their academic expectations. Management in Science and Technology (MST) courses may not be audited.

Any request to change credit/audit status must be submitted in writing to the Graduate Education Department. Requests received during the first six weeks of the quarter do not need the instructor’s approval. Students may change status after the first six weeks and before the final exam (or last class meeting for classes without exams) by submitting a request that includes the instructor’s written permission. Status cannot be changed after the final exam (or last class meeting for classes without exams).

CODE OF CONDUCT

OHSU’s Code of Conduct guides the behavior and performance of all members of the Oregon Health & Science University community. As members of that community, all OGI students, matriculated and non-matriculated, must comply with the Code of Conduct and all other OHSU policies. It is incumbent on the student to be familiar with the Code of Conduct and to abide by the guidelines and expectations therein. An electronic version of the Code of Conduct is available at www.ohsu.edu/cc/codeofco.pdf. Hard copies of the document are available from the OGI Department of Graduate Education, Paul Clayton Building, phone 503-748-1382, grad.ed@admin.ogi.edu. Questions about the OHSU Code of Conduct can be directed to the OHSU Integrity Office at 503-494-8849.

CONFIDENTIALITY OF STUDENT RECORDS

With the passage of the Federal Family Educational Rights and Privacy Act (FERPA) of 1974, Oregon Health & Science University adopted rules to govern the collection, use and disclosure of student records with the goal of ensuring their privacy. Students have the right to inspect their educational records that are maintained by OGI/OHSU, the right to a hearing to challenge the contents of those records when they allege the records contain misleading or inaccurate information, and the right to give their written consent before their records are released to any person, agency or organization other than OGI/OHSU officials and certain authorized federal and state authorities.

Directory Information. OGI/OHSU can release certain public domain information, known as directory information, unless a student has filed a written request in the OHSU Registrar’s Office to restrict his/her directory information. Each student has the right to designate directory information as not being subject to release without his or her consent, except as otherwise permitted by law. OHSU’s Registrar’s Office shall provide to each student a form entitled “Request to Restrict Directory Information” to be used by the student to designate that directory information may not be released without the student’s consent. If the student does not submit the completed form by the date indicated, OHSU may release directory information pertaining to that student. This form, including the list of OHSU’s designated directory information items, is available at www.ohsu.edu/registrar/reqtorestricdirinfo.pdf.

CONTINUOUS ENROLLMENT

Unless on approved leave of absence, a Ph.D. or master’s student who has begun work on his/her thesis/dissertation must register and pay for at least one research credit per quarter, in addition to any other registered course credits, in order to maintain matriculated status. A student is considered to have begun work on his or her thesis/dissertation when he or she first registers for 503 - Master’s Thesis Research (for master’s students) or 603 - Ph.D. Dissertation Research (for Ph.D. students). Continuous enrollment is not required of master’s students not pursuing a thesis, or of master’s or Ph.D. students who have not initially registered for 503 or 603 research (as appropriate). If a Ph.D. or master’s thesis student graduates (including EPC approval) before the last day to register in a term, continuous enrollment for that term is not required.

CREDIT LOAD PER QUARTER

Twelve credits per quarter are considered a normal course load for full-time, degree seeking students, although nine or more is considered full time status. Academic departments may require students to carry more than nine credits per quarter as a condition of eligibility for a stipend and/or tuition scholarship. A student may not register for more than 12 credits in a quarter without his or her academic department’s approval. Audit credits do not count towards full-time status. Students registering for fewer than 9 credit hours are considered part time and are not eligible for student benefits, such as health insurance.

DROPPING A COURSE

To drop a course a student must officially modify his/her registration by either dropping the course online or by contacting the Department of Graduate Education in writing. Notifying the instructor of the intention to drop or withdraw from a course is not sufficient and may result in a failing grade and full responsibility for the tuition. Refunds and transcripts are based on the date the registration is officially modified, not the date of last attendance. Courses dropped during the designated refund period (see Refund Policy under Tuition and Fees) will not appear on the transcript. Courses dropped outside of the refund period will be listed on the transcript as a withdrawal. Students may withdraw from OGI courses at any time before the final exam or the last class meeting for classes without final exams.
GRADING

Most OGI School courses are graded with a letter grade. Research work may be graded with either a Pass/No Pass or letter grade as determined by each academic program. Independent study is graded with a letter grade.

Transfer credits and Pass/No Pass grades are not counted in students’ Grade Point Averages (GPAs). The GPA is a weighted average of all eligible credits and grade value points.

The following value point scale is employed at the OGI School of Science & Engineering:

- A = 4.00
- B = 3.00
- C = 2.00
- A- = 3.67
- B- = 2.67
- C- = 1.67
- B+ = 3.33
- C+ = 2.33
- F = 0.00

The grading system is defined as:

- A = Excellent
- B = Satisfactory
- C = Below graduate standard
- F = Failure

The following marks are also used:
- AU = Audit, no credit
- P = Satisfactory completion (B- or higher)
- NP = Unsatisfactory, no credit (C+ or lower)
- I = Incomplete
- PI = Permanent Incomplete
- W = Withdrawn (after the add/drop period)
- NG = No grade submitted
- X = No basis for grade

Matriculated students must maintain a cumulative GPA of 3.0 or higher. Failure to do so will result in academic probation, and if the GPA is not improved, may lead to dismissal. A minimum cumulative GPA of 3.0 is required to graduate.

Incompletes. Students unable to complete work for a course due to unforeseen circumstances may ask the instructor for an Incomplete. An Incomplete grade is temporary and must be completed by the end of the following quarter. It is up to the student and the instructor to work out a plan to ensure the course work is finished by the deadline. An incomplete should not be awarded unless such a plan has been discussed.

In cases where the Incomplete is not finished by the deadline, the instructor has the choice of assigning a grade or converting the Incomplete into a Permanent Incomplete (PI). The grade may be an “F” but instructors have the option of assigning another grade if they feel quality and quantity of work accomplished warrants it.

If a student needs an extension of this one-quarter deadline, the student may petition the Educational Policy Committee (EPC) in writing, showing the instructor’s support of the extension (a separate letter, e-mail or signature on the petition will suffice). The petition should be specific, include a date by which the grade will be assigned, and submitted to the Graduate Education Department in writing.

If a student chooses to finish the Incomplete by retaking the course he/she must register for and pay for the repeated course prior to attending any class meetings. Doing so will result in the original Incomplete becoming a Permanent Incomplete on the transcript. The grade and credits earned for the second enrollment in the class will apply towards degree requirements.

LEAVE OF ABSENCE

Approved Leave: A student matriculated in a degree program and in good academic standing may apply for a leave of absence from school. A leave of absence must be approved by the student’s academic department and documented with the Graduate Education Department. Approved leave status is granted for a specific period of time and an extension to the leave must be re-approved. While on leave of absence a student may not use university resources, such as the library, computing facilities, advisor or department services. The time a student spends on approved leave will not be included in the time limits to complete a degree.

Unapproved Leave: Students failing to notify OGI of their leave will be placed on inactive status following 4 consecutive quarters of not completing a class. At that point matriculated students will be notified of their status and asked to clarify their intentions regarding the completion of their degrees. If a student has not enrolled in classes or requested an approved leave within four additional quarters that student will be administratively withdrawn from the program. Once withdrawn, if the student wishes to resume his/her work towards a degree, he/she must reapply to the program, submitting a new application and paying a new application fee. Reapplication will be subject to the admissions requirements in place at that time, and department review and acceptance in accordance with the department’s current admissions practices. If readmitted, the student will be subject to the degree requirements in effect at time of re-matriculation. The time a matriculated student spends on unapproved leave will be included in the time limits to complete a degree.

Important Note: Students must be aware that other requirements, regulations or restrictions (such as but not limited to: visa status, department scholarships, financial aid and health insurance eligibility) may impose different enrollment requirements than those allowed under OGI’s Leave of Absence policy. It is the student’s responsibility to register for the appropriate number of credits that may be required in accordance with their particular situation.

MATRICULATED VS. NON-MATRICULATED

A matriculated student is formally admitted and enrolled in a degree program. A non-matriculated student has not applied and been admitted to a degree program. In order to receive a degree from the OGI School of Science & Engineering, a student must be matriculated into a degree program. Students are encouraged to matriculate prior to completing 21 credits since no more than 21 credits taken as a non-matriculated student will be applied towards degree requirements (see Pre-Matriculation Credits Applied Towards a Degree below).

ON-SITE (RESIDENCY) PH.D. REQUIREMENTS

The OGI School has a two-year on-site residency requirement for Ph.D. programs. Full-time Ph.D. students usually meet this requirement by an on-site dissertation project under the advisement of an OGI faculty member. Part-time Ph.D. students can satisfy the first year of the on-site requirement by attendance in classes on the OGI campus. Because part-time Ph.D. students, by definition, are not on campus full time, the
student’s academic department will determine residency requirements for the second year.

In exceptional circumstances (e.g., dissertation topics requiring access to special facilities only available elsewhere), other arrangements may be proposed to the student’s academic department for written approval. There is no on-site program requirement for Masters or certificate programs at OGI.

**PRE-MATRICULATION CREDITS APPLIED TOWARD A DEGREE**

A maximum of 21 credits earned before acceptance to a degree program at OGI may be applied toward degree requirements. This maximum may include a combination of up to 12 transfer credits (18 from Portland State University, University of Oregon and Oregon State University) and credits taken at OGI. The academic program determines which pre-matriculation credits will be accepted towards degree requirements. Exceptions to the 21 credit maximum are solely at the discretion of the academic program.

OGI credits do not “expire” after a certain number of years. There are time limits for completing a degree, but courses taken prior to matriculation, or if matriculation is interrupted, might still be used towards fulfilling degree requirements.

**REGISTRATION**

Anyone may register for classes at OGI, regardless of their admissions status into a degree program. Each quarter, a class schedule is published listing the courses being offered with the dates, times and locations. To access a current class schedule online, visit www.ogi.edu/schedule/. All students attending a class must be registered for that class. A student will not earn a grade or credits for the class if he or she is not registered for that class.

A student may register for classes online at www.ogi.edu/graduate_edu/registration/. Online registration is available seven days a week during established registration times. Registering for classes on or after the first day of each academic term will result in a non-refundable late fee being charged.

**SATISFACTORY ACADEMIC PROGRESS**

Matriculated students must maintain a cumulative GPA of 3.0 or higher. Failure to do so will result in academic probation, and if the GPA is not improved, may lead to dismissal from the school. Departments may have additional requirements for meeting satisfactory academic progress.

Additionally, students performing research must maintain satisfactory research performance as determined by their research advisor and/or academic program. Failure to do so may result in disciplinary action, including but not limited to: academic probation, termination of stipend and/or tuition support, dismissal from the program and/or dismissal from the school.

**TIME LIMITS TO COMPLETE A DEGREE**

A master’s degree must be completed within seven years from the quarter of matriculation. A Ph.D. degree must be completed within five years from the time the student passes the Ph.D. qualifying exam. Petitions for extensions to the time limit must first be approved by the department and then submitted to the Educational Policy Committee for final approval.

**TRANSCRIPTS**

A student’s official transcript is a formal, written record of all courses, grades and degrees earned while at OGI/OHSU. Requests for transcripts must be in writing with a signature, submitted either by fax, mail or in person to the OHSU Registrar’s office. Official transcripts cost $12 per copy when ordered 48 hours in advance. For quicker service or a faxed official transcript the fee is $17. A request form for an official transcript can be found at www.ohsu.edu/registrar/transcriptreq.pdf.

**TRANSFER CREDITS**

The OGI School of Science & Engineering accepts graduate-level transfer credits from accredited institutions that have not been, or will not be, applied toward another degree. Up to 12 credits may be transferred to OGI (18 from Portland State University, University of Oregon and Oregon State University). Credits transferred to OGI must typically come from courses completed before matriculation at OGI. The specific credits, if any, which will be accepted as transfer credits into OGI and applied toward degree requirements, are determined solely by the academic department. Only courses with a B (3.0) or better grade may be transferred to a student’s OGI academic record. Transfer credit grades are not calculated in the OGI grade point average. Credits graded on a Pass/No Pass basis may not be transferred.

**WITHDRAWING FROM A DEGREE PROGRAM**

At any time prior to earning a degree, a student may choose to withdraw from his/her academic program. To withdraw from the program, a student should notify his/her academic department in writing of his/her intent to withdraw. The student is also required to submit the OHSU Withdrawal form available at www.ohsu.edu/registrar/wdloa.pdf, the OGI Exit Form available at www.ogi.edu/graduate_edu/forms/Exit%20Form.pdf and arrange a financial aid exit interview (if applicable).

Once withdrawn, if the student wishes to resume his/her work towards a degree, he/she must reapply to the program, submitting a new application and paying a new application fee. Reapplication will be subject to the admissions requirements in place at that time and department review and acceptance in accordance with the department’s admissions practices. If readmitted, the student will be subject to the degree requirements in effect at time of re-matriculation.

**THE CAMPUS**

**GEOGRAPHIC SETTING**

The greater-Portland metropolitan area has a population of about 1 million, nearly half the population of Oregon. It provides diverse cultural activities including art, music, entertainment and sports. Portland has an extensive park system, including the largest wilderness park within the limits of any city in the United States. The OGI School of Science & Engineering is currently located 12 miles west of downtown Portland, in an area known as the “Silicon Forest.” OGI’s neighbors...
include Intel's largest research and development facility, Tektronix, IBM, Hewlett-Packard, Mentor Graphics, Nike, Adidas and hundreds of other technology-based companies.

OGI is the newest school within Oregon Health & Science University (OHSU), joining the Schools of Medicine, Dentistry and Nursing, which are located on the Marquam Hill Campus in downtown Portland. OGI is part of OHSU's 300-acre West Campus, which also includes the Neurological Sciences Institute, the Oregon National Primate Research Center and the Vaccine and Gene Therapy Institute. The OGI campus consists of modern buildings that provide spacious laboratories, faculty and administrative offices and a research library.

In early 2006, OHSU announced plans to move the School of Science & Engineering to its Schnitzer Campus site (between the Marquam Bridge and the Ross Island Bridge) in Portland's South Waterfront district, in approximately seven years. In the leading edge of that transition, the School's Department of Biomedical Engineering will move to OHSU's new Center for Health & Healing sometime during the 2006-2007 school year.

In the near future, OGI also plans to sell its Hillsboro campus to build its endowment and lease back the site for use until its move to the South Waterfront is complete. Even after the transition to the Schnitzer Campus, OGI plans to continue providing convenient, accessible educational opportunities for Washington County-based students; in the interim, OGI's courses will continue to be offered without interruption at its current location on OHSU's West Campus in Hillsboro.

**LIBRARY**

The Samuel L. Diack Library's collection includes more than 21,000 monographic titles (including over 7,000 electronic books in computer science and business) and over 500 current print and electronic journal subscriptions. These support the teaching and research efforts at the OGI School by providing texts, conference proceedings, reference materials, journals and research monographs in the subject areas of computer science, electrical engineering, environmental science, biochemistry, molecular biology and management as related to science and technology. These resources are supplemented by the OHSU Library's holdings of more than 74,000 monographs and 1,200 print and electronic journal subscriptions.

OGI students can access the OHSU Library's electronic collections from OGI and can use the print collections by visiting the hill campus or requesting materials be sent to OGI. A proxy server allows access to the libraries' electronic collections from off campus. Materials unavailable from the OHSU libraries are obtained on interlibrary loan for faculty, staff and students at no cost. An online catalog, acquisitions and circulation system is in place. The library is a member of the Orbi Cascade Alliance, a consortium that provides access to 33 other college and university collections in Oregon and Washington. These include the University of Oregon, Oregon State University, Portland State University and the six baccalaureate institutions in Washington, e.g., University of Washington and Washington State University.

The library's public workstations not only provide for searching the catalog and the library's databases but also provide entry to Web resources for faculty, staff and students. The librarians will perform searches on the systems and databases that are not available directly to students. Library orientation is part of the introduction to OGI for new students and resource guides are available from the Library's Web site.

**HOUSING**

The OGI School is situated amid a large residential area and relies on the numerous apartment complexes in the area for housing students. In addition, due to excellent public transportation on bus or light-rail, additional housing opportunities are available throughout the city. The Graduate Education Department maintains a list of local apartment buildings, available at www.ogi.edu/graduate_edu/students/housing/ The OGI Student Council has a Web site for current, new and prospective OGI students who are looking for housing information, roommates, and other related information at cse.ogi.edu/council/forums.html.

Additional housing information for the area around OHSU can be found at www.ohsu.edu/academic/acad/housing/

**STUDENT COUNCIL**

The Student Council serves as the liaison between the student body and the faculty and administration, and strives to improve the quality of life for students at OGI. The Student Council sponsors and coordinates major social events throughout the academic year in order to bring together the entire OGI student body and the OGI community at large.

Through collaboration with the OHSU Student Council, additional activities, such as periodic skiing and rafting trips, are also available to OGI students. Many student events throughout OHSU are open to all students at the four OHSU schools. More information on OGI’s Student Council is available on their Web site, www.csee.ogi.edu/council/ or by e-mail at scouncil@admin.ogi.edu.
OVERVIEW OF OGI ACADEMIC PROGRAMS

OGI prepares its graduates to become leaders in knowledge-driven professions by providing a learning environment strongly focused on collaborative, interdisciplinary research. OGI students learn to reach across traditional academic boundaries to seek the knowledge and resources needed to solve important technological problems. Our curriculum is organized to facilitate this type of educational experience, where students may choose from a number of challenging paths to reach their goal of a degree in a particular discipline. This program-focused curriculum encourages students to work closely with their advisors to select a course of study that matches their specific needs, strengths and career objectives. The following listing summarizes OGI’s current academic programs and directs the reader to the corresponding academic department(s) offering that program.

BIOCHEMISTRY AND MOLECULAR BIOLOGY PROGRAM
See Department of Environmental and Biomolecular Systems, page 39
Doctor of Philosophy in Biochemistry and Molecular Biology
Master of Science in Biochemistry and Molecular Biology

BIOMEDICAL ENGINEERING PROGRAM
See Department of Biomedical Engineering, page 15
Doctor of Philosophy in Biomedical Engineering
Master of Science in Biomedical Engineering
  Biomedical Optics Track
  Cardiovascular/Tissue Engineering Track
  Neuroengineering Track
  Speech and Language Engineering Track

COMPUTER SCIENCE AND ENGINEERING PROGRAM
See Department of Computer Science and Electrical Engineering, page 23
Doctor of Philosophy in Computer Science and Engineering
Master of Science in Computer Science and Engineering
  COMPUTATIONAL BIOSCIENCE CONCENTRATION
  COMPUTER SCIENCE AND ENGINEERING CONCENTRATION
    Adaptive Systems Track
    Human-Computer Interaction Track
    Spoken Language Systems Track

ELECTRICAL ENGINEERING PROGRAM
See Department of Computer Science and Electrical Engineering, page 23
Doctor of Philosophy in Electrical Engineering
Master of Science in Electrical Engineering
  COMPUTER ENGINEERING AND DESIGN CONCENTRATION
  SIGNALS AND SYSTEMS CONCENTRATION
    Machine Learning Track
    Signals and Image Processing Track
    Speech Processing Track

ENVIRONMENTAL SCIENCE AND ENGINEERING PROGRAM
See Department of Environmental and Biomolecular Systems, page 39
Doctor of Philosophy in Environmental Science and Engineering
  Environmental Information Technology Track
Master of Science in Environmental Science and Engineering
  Environmental Information Technology Track

MANAGEMENT IN SCIENCE AND TECHNOLOGY PROGRAM
See Department of Management in Science and Technology, page 57
Master of Science in Management in Science and Technology
  Master Graduate Certificates
    Health Care Management
    Management in Science & Technology
THE DEPARTMENT OF BIOMEDICAL ENGINEERING integrates the disciplines of engineering, basic biomedical science, and clinical science. Our graduate educational program is designed to provide a broad education across these disciplines as well as knowledge and in-depth research training in a specialty field. In our rigorous curriculum, a quantitative engineering approach is applied to the study of medically related systems and topics. Our program prepares students for careers in academia, industry, and government.

The OGI/OHSU Department of Biomedical Engineering offers students both didactic education and nontraditional learning modes. Students can do advanced basic research in leading laboratories and they can do research projects that relate directly to patients, working under medical supervision to develop and apply new technology in the clinics or in laboratories that study patients.

Two degrees are offered:
- Master of Science in Biomedical Engineering
- Doctor of Philosophy in Biomedical Engineering

Courses in the following specialty tracks are available for both degrees:
- Biomedical Optics Track
- Cardiovascular/Tissue Engineering Track
- Neuroengineering Track
- Speech and Language Engineering Track

ADMISSION REQUIREMENTS

Admissions requirements include the general requirements of the OGI School with the following additions.
- A B.S. or M.S. degree in physics, chemistry, mathematics, engineering or another quantitative science discipline is required. Highly qualified individuals with degrees in biology may be considered if they have demonstrated adequate quantitative skills.
- GRE test scores are required for both M.S. and Ph.D. applicants, unless a waiver is specifically authorized.
- The preferred minimum TOEFL score is 620 paper/260 computer/105 internet.

Suggested preparatory prerequisites to the Biomedical Engineering program include: courses in anatomy/physiology, one year of college biology, organic chemistry, calculus through differential equations and linear algebra, one year of calculus-based physics, basic programming skills in a higher-level language and some experience with numerical analysis software.

DEGREE REQUIREMENTS

During the first year, both M.S. and Ph.D. students will focus on the core courses (listed below) required for the Biomedical Engineering program. During the student’s first year, a Student Program Committee (SPC) composed of three faculty members will be formed for each student. This committee will work with the student to advise a course of study consistent with both the student’s interests and the need for broad knowledge in biomedical engineering and in-depth knowledge in the student’s chosen specialty. For students working on a thesis or dissertation, during the second year the student will transition to a thesis committee composed of five faculty members, including one or more from another department or university.

BME Core Courses (26 credits)

All BME students must complete the following core courses in accordance with the degree requirements stated below:

Note: 5xx courses are for M.S. students when available; 6xx for Ph.D. students when available

BME 505/605 Readings in Biomedical . . . . . . 0 credits
BME 507/607 Biomedical Engineering . . . . . . 0 credits
CONJ 650 Principles of Scientific . . . . . . 2 credits

LIFE SCIENCES

CONJ 661 Structure and Function of . . . . . . 3 credits
CONJ 664 Molecular Cell Biology . . . . . . 3 credits
CONJ 667 Organ Systems . . . . . . . . . . . . . 3 credits

Department of Biomedical Engineering

www.bme.ogi.edu/

DEPARTMENT HEAD
Stephen Hanson, Ph.D.
503 748-1435
E-mail: shanson@bme.ogi.edu

ASSOCIATE DEPARTMENT HEAD
William Roberts, Ph.D.
503 748-1082
E-mail: robertsw@ohsu.edu

ACADEMIC COORDINATOR
Chelea Holdt
503 748-1952
E-mail: holdtc@ohsu.edu

DEPARTMENT ADMINISTRATOR
Melanie Erskine
503 748-1935
E-mail: Melanie.Erskine@bme.ogi.edu

GENERAL INQUIRIES
503 748-1952
E-mail: holdtc@ohsu.edu

Monica Hinds, Ph.D., assistant professor in the Department of Biomedical Engineering and researcher in OGI’s Cardiovascular Engineering group, is engineering replacements for vascular tissue.
BME | BIOMEDICAL ENGINEERING

STATISTICS
MATH 530/630 Probability and Statistical Inference for Scientists and Engineers…

SIGNALS AND SYSTEMS
BME 582/682 Nature and Analysis of Biomedical Signals…
EE 580/680 Signals and Linear Systems…

ENGINEERING
BME 540/640 Fluid Mechanics…
BME 541/641 Mechanical Properties…

BIOMEDICAL OPTICS TRACK
BME 527/627 Computational Approaches to Light Transport in Biological Tissues…
EE 582/682 Introduction to Digital Signal Processing…
EE 584/684 Introduction to Image Processing…

Other appropriate courses as approved by the SPC

MASTER OF SCIENCE IN BIOMEDICAL ENGINEERING
The M.S. degree requires a total of 47 credits, comprised of 26 credits of core courses, and 21 credits from elective courses. A research project or masters thesis is not required, and may be undertaken only with permission of a supervising faculty member. A student’s SPC should approve the selection of elective courses prior to beginning the class.

SPECIALTY TRACKS
The following specialized tracks are available to students or a customized track may be developed with the SPC. Each student should consult with his/her SPC to identify a satisfactory program.

BIOMEDICAL OPTICS TRACK
Note: 5xx courses are for M.S. students when available; 6xx for Ph.D. students when available

• BME CORE COURSES (listed above)
• TRACK ELECTIVES
BME 522/622 Biomedical Optics I…
BME 523/623 Biomedical Optics II…
BME 524/624 Biomedical Optics III…
BME 525/625 Biomedical Photomechanics…
BME 527/627 Computational Approaches to Laser Tissue Interactions…
BME 528/628 Physical and Geometrical Optics…
EE 582/682 Introduction to Digital Signal Processing…
EE 584/684 Introduction to Image Processing…

Other appropriate courses as approved by the SPC

CARDIOVASCULAR/TISSUE ENGINEERING TRACK
Note: 5xx courses are for M.S. students when available; 6xx for Ph.D. students when available

• BME CORE COURSES (listed above)
• TRACK ELECTIVES
BEM 620 Membrane Biochemistry…
BME 542/642 Mechanics of Biological Tissues II…
BME 543/643 Advanced Tissue Engineering Techniques…
BME 544/644 Advanced Biomaterials…
BME 545/645 Biocompatibility…
BME 569/669 Analytical Electron Microscopy…

Other appropriate courses as approved by the student’s SPC

SPEECH AND LANGUAGE ENGINEERING TRACK
Note: 5xx courses are for M.S. students when available; 6xx for Ph.D. students when available

• BME CORE COURSES (listed above)
• TRACK ELECTIVES
BME 565/665 Introduction to Computational Neurophysiology…
BME 568/668 Auditory and Visual Processing…
EE 582/682 Introduction to Digital Signal Processing…
EE 584/684 Introduction to Image Processing…
NEUS 623 Introduction to Neuroanatomy…
NEUS 624 Cellular Neurophysiology…
NEUS 625 Neurochemistry…
NEUS 636 Nanobiotechnology…

Other appropriate courses as approved by the SPC

NEUROENGINEERING TRACK
Note: 5xx courses are for M.S. students when available; 6xx for Ph.D. students when available

• BME CORE COURSES (listed above)
• TRACK ELECTIVES
BME 568/668 Auditory and Visual Processing…
EE 586/686 Adaptive and Statistical Signal Processing…

MATH 519/619 Engineering Optimization…
SySc 545 Information Theory (Portland State University)

OTHER ELECTIVES — ALL TRACKS
BME 502/602 Independent Study…
BME 504/604 Professional Internship…
BME 506/606 Special Topics Courses…
BME 581/681 Fourier Analysis…

DOCTOR OF PHILOSOPHY IN BIOMEDICAL ENGINEERING

In addition to the general OGI requirements for a Ph.D., the BME Ph.D. degree requirements are satisfied in three parts:

BME COURSES: Students are required to complete the BME core courses as listed above. Particularly well-prepared students may petition the BME department to waive one or more courses based on demonstrated graduate-level knowledge of the course content. A student’s SPC is likely to require additional elective courses depending on the student’s prior education, experience and preparedness for the Ph.D. qualifying exam. There is no specific elective credit hour requirement for Ph.D. students. Students must also demonstrate satisfactory performance in at least 54 credit hours of dissertation research.

ADVANCEMENT TO PH.D. CANDIDACY: A Ph.D. student is required to pass a Ph.D. qualifying exam. The two-part examination is normally taken 12 to 24 months after initial enrollment. The first part consists of an oral, public presentation of a thesis proposal. The second part is an oral examination by the student’s SPC to test knowledge in both the student’s chosen specialty and core topics. Students advance to Ph.D. candidacy upon passing the qualifying exam and completion of all required core courses.

DISSERTATION RESEARCH AND DEFENSE: The SPC will work with the student to develop a research plan and schedule for the dissertation. The student will be required to register for appropriate research credits throughout the research, presentation and submission process. Satisfactory performance in a minimum of 54 credit hours is required.
hours of dissertation research is required. The dissertation must constitute significant, original research resulting in a written document of publishable quality and must be successfully defended in an oral presentation.

**SPECIALTY TRACKS**

Elective specialty courses are available in the four tracks listed above. The student’s advisor and SPC will determine which specialty courses are required in the Ph.D. program. There are no fixed credit hour requirements for electives; however each student will be tested for knowledge of his or her chosen specialty in the qualifying examination.

**RESEARCH PROGRAMS**

**Biomedical Optics**

Research in biomedical optics is focused on the development of uses for lasers and light in medicine and biology. Examples of ongoing applications in this well-established research program include the use of lasers in clinical diagnosis, nondestructive evaluation of tissues, optical imaging of disease, and light-activated chemotherapy for cancer. Facilities include those for both clinical application and basic research.

Jacques, kirkpatrick, Prabl, Wang

**Cardiovascular Biomedical Engineering**

Cardiovascular biomedical engineering (CBE) is a growing area of interest at OHSU. The CBE program encompasses several specialty areas using engineering tools for investigation. The specialty areas include cardiac and vessel mechanics, computational fluid dynamics, electrocardiography and electrical signal processing, 4-D embryo modeling, functional magnetic resonance imaging, ultrasound technology, cellular mechano-transduction and gene expression, blood-material interactions, thrombosis, laser thrombolysis, and hemostasis.

Faber, Goldstein, Gruber, Hanson, Hinds, McCarty, McNamara, Sahn, Thong, Thornburg

**Imaging Research**

Imaging technology is now central to the diagnosis and treatment of nearly all diseases and is critical for drug development, evaluation of treatment effects on the biology of normal and abnormal tissue function. Core faculty will be hired in biomedical engineering with research foci in medical imaging. In addition, a wide range of faculty across the OHSU campus use imaging in their basic and clinical research. Thus, students will have an opportunity to implement imaging engineering research in a variety of biomedical research settings. Particular areas of concentration at OHSU are Neuroimaging, Cardiac Imaging and Cancer Imaging.

Erdogmus, Janowsky, Neuwelt, Sahn, Song, Spencer, Springer, Szumowski, Wang

**Informatics Research**

Informatics activities at OHSU are wide ranging; currently they include: managing and analyzing gene expression data; programs in medical informatics and outcomes research; basic research in databases; networks and embedded systems; and techniques for 3-D visualization. BME, in conjunction with the Department of Computer Science and Electrical Engineering and the Department of Medical Informatics, works to develop and apply technologies in such areas as computational bioengineering, medical visualization, integration of genomic and medical information, home health networking and hybrid instrumentation. BME will also contribute to existing curricula in bioinformatics.

Erdogmus, Hersh, Jimison, Maier, Pentacost, Sheard

**Neuroengineering Research**

Basic neuroscience research, clinical neurology and neurosurgery are strong programs within OHSU. The existence of a department, biomedical engineering in this center of neuroscience research and clinical medicine creates rich opportunities for biomedical engineers. They can work with neuroscientists and clinicians to apply emerging scientific knowledge in the development of processes and devices needed for the diagnosis, assessment and treatment of neurological disorders and diseases. Ongoing research opportunities range from very basic molecular biophysics and modeling to systems analysis to drug delivery systems, neuroprosthetics, and neurosurgical devices.


**Point-of-Care Biomedical Engineering**

Research in this area is focused on the development of health care delivery systems suitable for use in homes, assisted-living facilities and other residential settings. Application areas include processes and technologies for the monitoring, evaluation and treatment of people disabled by aging, chronic disease, or disability. Research challenges include the development of unobtrusive sensors, wireless communication of multi-rate signals, processing and fusion of signals from multitudes of noisy sensors, and ubiquitous perceptual interfaces.

Fried-Oken, Hammerstrom, Hayes, Horak, Jimison, Krohn, Pavel

**Rehabilitation and Biomechanics Research**

Many diseases and disorders of muscle, bone and the nervous system require treatment, immobilization, healing and rehabilitation. Basic and applied research focuses on the normal and abnormal control of movement and musculoskeletal biology. This research is multidisciplinary and highly collaborative with both clinical and basic science departments at OHSU. Currently active research by our faculty has resulted in the development of novel therapeutic devices and procedures that are tested on patient groups provided by collaborating clinicians.

Cordo, Hart, Herberg, Horak, Nutt, Orwoll, Peterka

**Tissue Engineering and Biomaterials Research**

Research in tissue engineering and biomaterials is represented by a multi-disciplinary group of materials scientists, biomedical and tissue engineers, chemists, physiologists, dentists and physicists. Faculty projects include the following research: physical biomechanics of dental and orthopedic implants, computational biomechanics of dental implants, dental restorations, dissolution and volatilization from dental alloys; non-invasive and non-destructive evaluation of engineered tissues; laser welding of tissues; natural, protein-based biomaterials; polymer mechanics; micromechanics of biocomposites; thermal analysis; tribology; collagen and other biocomposites; skin scaffolds; bone healing; blood vessel substitutes, vascular grafts, and endovascular stents.

Dawson, Ferracane, Gregory, Hanson, Herberg, Hinds, Kirkpatrick, McCarthy, Mitchell, Sakaguchi

**FACILITIES**

The Department of Biomedical Engineering will move into OHSU’s new Center for Health and Healing building on the South Waterfront Campus in late 2006. BME will occupy new ‘wet’ laboratories, ‘dry’ laboratories, and offices on the thirteenth floor. Some BME labs will remain on OHSU’s West Campus and the adjacent Oregon National Primate Research Center.

The department is equipped with a modern computer network system, serviced by OGIS and OHSU’s Information Technology Groups. Student workstations are equipped with high speed network connections. Video teleconferencing facilities are available to allow students and faculty to interact with others at off-campus locations. The new South Waterfront Campus is connected to the main OHSU Marquam Hill Campus by a fast aerial tram.

Some students’ research projects are conducted in laboratories in other OHSU departments or in local industries. Available facilities in which students may do research projects include: Oregon Medical Laser Center, Advanced Imaging Research Center, Oregon Hearing Research Center, Neurological Sciences Institute, and Oregon Heart Research Center, as well as the many labs in the basic science departments and institutes of OHSU.
RESEARCH INTERESTS
Thrombosis and vascular healing responses are being evaluated in animal models to identify key hemostatic mechanisms, blood component interactions with natural and synthetic surfaces and the effects of blood-flow phenomena. Our ultimate goals are to develop more effective antithrombotic and antiinflammatory drug therapies, and to improve the performance of prosthetic cardiovascular devices.

REPRESENTATIVE PUBLICATIONS


MONICA THACKER HINDS
Assistant Professor
Ph.D., Mechanical Engineering
Johns Hopkins University, 1998
hindsm@bme.ogi.edu

RESEARCH INTERESTS
Relationship between fluid dynamics and extracellular matrix production by cells, vascular tissue engineering, role of mechanical stimulation in tissue engineered constructs, elastin based biomaterials.

REPRESENTATIVE PUBLICATIONS


STEVEN L. JACQUES
Professor
Ph.D., Biophysics and Medical Physics
University of California, Berkeley, 1984
sjacques@bme.ogi.edu

RESEARCH INTERESTS

REPRESENTATIVE PUBLICATIONS


SEAN J. KIRKPATRICK
Associate Professor
Ph.D., Biomechanics
University of Miami, 1992
skirkpat@bme.ogi.edu

RESEARCH INTERESTS
Theory and application of light scattering to address issues in the structure and function of healthy and diseased biological tissues. Of particular interest is the micromechanical behavior of biological cells and tissues as a function of disease state. Other interests include the use of optical techniques for the nondestructive evaluation of natural and synthetic biomaterials, including engineered tissues.

REPRESENTATIVE PUBLICATIONS


REPRESENTATIVE PUBLICATIONS


REPRESENTATIVE PUBLICATIONS


MISHA PAVEL
Professor
Ph.D., Experimental Psychology
New York University, 1980
pavel@bme.ogi.edu

RESEARCH INTERESTS
Misha Pavel’s main area of research is at the intersection of mathematical modeling of complex behaviors of biological systems, engineering and cognitive science, with a focus on information fusion, pattern recognition, augmented cognition and the development of multimodal and perceptual human-computer interfaces. His current research is focused on the development of models and methodologies for the unobtrusive assessment of cognitive and health states of elders. This is a facet of his effort as a director of the Point-of-Care Laboratory to use technology to enable a conversion from today’s reactive to future proactive and distributed healthcare. In related work, Dr. Pavel is developing principled approaches to amplify human cognitive abilities that would enable operators to improve the quality and speed of their decision-making.

REPRESENTATIVE PUBLICATIONS

SANDRA RUGONYI
Assistant Professor
Ph.D., Mechanical Engineering
Massachusetts Institute of Technology, 2001
rugonyis@bme.ogi.edu

RESEARCH INTERESTS
Modeling and numerical simulation of biological systems. Current research projects include the modeling of i) the alveoli of the lungs, with the goal of understanding mechanisms that affect alveolar stability; ii) mass transfer in the boundary layer region of blood vessels, with the goal of quantifying transport of drugs and other bioactive molecules; iii) the heart of chick embryos, with the goal of understanding the role of hemodynamic forces on congenital heart disease.

REPRESENTATIVE PUBLICATIONS

TRAN THONG
Assistant Professor
Ph.D., Electrical Engineering
Princeton University, 1975
tran@bme.ogi.edu

RESEARCH INTERESTS
Cardiovascular engineering in the area of cardiac tachyarrhythmia prediction and prevention both in atria and ventricles, heart rate variability as a tool for assessing autonomic nervous system tone with applications to diagnoses for various diseases, e.g. migraine headache, Rest syndrome. Biomedical signal processing using discrete time modeling and system design.

REPRESENTATIVE PUBLICATIONS
**Research Interests**

**Representative Publications**
Vu TQ, Rajan Sundara S. Quantum Dot Imaging and Diagnostics in Neuronal and Tissues. In: At the Building Block Level: Nanotechnology for Biology and Medicine, Editor, Silva, GA. Springer, Scientific, (in publication).


THE DEPARTMENT OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING is internationally known for its research and education in speech and language technologies, machine learning, adaptive and statistical signal processing, and pattern recognition. These areas are studied at the theoretical and the practical level, the latter with special emphasis on applications to biomedicine.

The Department’s educational offerings also include a master’s program in Computer Engineering and Design, taught primarily by industry experts. Four degrees are offered through the Department of Computer Science and Electrical Engineering:

- Master of Science in Computer Science and Engineering
- Master of Science in Electrical Engineering
- Doctor of Philosophy in Computer Science and Engineering
- Doctor of Philosophy in Electrical Engineering

ADMISSION REQUIREMENTS

In addition to the general OGI admission requirements, the CSEE Department requires the general aptitude GRE scores, except in the case of advanced placement admission for M.S. students (see below).

Desirable scores for the Test of English as a Foreign Language (TOEFL) in the CSEE Department are 650 for the paper-base test, 280 for the computer-based test or 115 for the internet based test. An applicant whose score is between 580/237/92 and 650/280/115 may be admitted if special mitigating factors exist, such as, excellent GRE scores.

Entering students for the CSE programs must have taken undergraduate courses in Discrete Mathematics and Data Structures (typically sophomore level courses) and be proficient in a modern programming language. In addition, each student must have completed senior level courses in Operating Systems and Computer Architecture or take the graduate-level courses at OGI (if offered) or at another school if the courses are not offered at OGI (which will then be counted as electives in the Masters program). Waivers will be considered for students with significant experience in implementation of operating systems or architectural design of hardware.

Students choosing the Computational Bioscience Concentration should have basic physiology or biology either taken beforehand or during the program.

Students pursuing the EE Computer Engineering and Design program should have a bachelor’s degree in EE, CS, physics, applied mathematics, or other related engineering field.

Students pursuing the EE Signals & Systems program should have a bachelor’s degree in EE or other related engineering field and be familiar with undergraduate level material in multivariate calculus, differential equations, linear algebra, complex variables, and probability.

ADVANCED PLACEMENT ADMISSIONS FOR M.S. STUDENTS

Applicants to the CSE and EE master’s programs who have completed at least four OGI courses may be eligible to apply for admission under the Advanced Placement option. Under this option, applicants are exempt from the GRE and TOEFL requirements and are required to provide only two letters of recommendation. All other admissions requirements remain the same.

For applicants applying to the M.S. CSE degree program through Advanced Placement, the four courses must include at least two, preferably three, courses from the M.S. CSE Breath Requirements or Computational Bioscience core (see below). The remaining credits must be CS, EE or MATH courses.

For applicants applying to the M.S. EE degree program through Advanced Placement, it is recommended the four courses include at least two courses from the
Computer Engineering and Design
Concentration Core or the Signals and Systems Concentration Core. The remaining credits must be EE, CS or MATH courses.

Students must earn an overall grade point average of 3.0 in their course work at OGI and a “B” or better in each M.S. class to be eligible to apply through Advanced Placement.

ADVISING
Matriculated M.S. students and Ph.D. students in CSE and EE, are assigned an individual faculty adviser and/or a Student Program Committee (SPC) that provides academic advising. The advisor or SPC approves the use of courses toward the student's degree requirements. The program of study for each M.S. student can be tailored to meet individual needs by the SPC or advisor. Students are encouraged to include “special-topic” (506) courses listed on the OGI Class Schedule Web page relevant to their interests.

Non-matriculated students may receive academic assistance through the CSEE Academic Coordinator at 503-748-1558 or advising@csee.ogi.edu.

DEGREE REQUIREMENTS

M.S. CSE students may pursue either a Computer Science and Engineering concentration or Computational Bioscience concentration.

M.S. COMPUTER SCIENCE AND ENGINEERING – COMPUTER SCIENCE AND ENGINEERING CONCENTRATION

M.S. CSE NON-THESIS OPTION
(Computer Science and Engineering)

Students choosing the non-thesis M.S. CSE option must complete a minimum of 15 courses and a minimum of 45 credits with a cumulative GPA of 3.0 or better. Up to six credits of non-thesis research (CS 501) may be included with the approval of the student's advisor or Student Program Committee (SPC). The first three credits of non-thesis research may be counted as one class, with an additional three credits counting as a second class toward the 15-class requirement.

M.S. CSE BREADTH REQUIREMENTS
(18 credits)

To demonstrate breadth of knowledge, each graduate of the MS CSE Computer Science and Engineering concentration at OGI is required to have proficiency in the following 6 areas:

- Programming
- Formal Reasoning
- Systems Design
- System Interfaces
- Applied Computing
- Communication Skills

To gain proficiency, each student must take one course in each area. A course cannot be used toward both the breadth and track requirements.

System Design
CS 516 Introduction to Software Engineering
CS 520 Software Architecture

Speech and Language Engineering
CS 550 Spoken Language Systems
CS 552 Speech Recognition
CS 564 Human Computer Interfaces
CS 567 User Oriented Systems

Statistical and Signal Computing
CS 547 Statistical Pattern Recognition
CS 559 Machine Learning
CS 562 Natural Language Processing
EE 582 Digital Signal Processing
EE 584 Image Processing
EE 585 Digital Video Processing
EE 588 Biomedical Imaging
EE 589 Computer Vision

Communication Skills
GEN 515 Scientific Proposal Writing
GEN 569 Scholarship Skills
MST 512 Project Management
MST 520 Becoming an Effective Manager
MST 521 Managing People in Organizations
MST 541 Leadership and Negotiation

Other courses can be substituted for the pre-approved courses listed above with consent of the advisor or the student’s Student Program Committee (SPC) and a faculty member in the breadth area.

M.S. CSE THESIS OPTION
(Computer Science and Engineering)

Students choosing the thesis option must find a faculty member willing to serve as a thesis advisor. The department does not assign thesis advisors. The thesis option requires a minimum of 45 credits and cumulative GPA of 3.0 or better. A written thesis and oral defense is required.

- M.S. CSE BREADTH (listed below)
- CS 503 M.S. THESIS RESEARCH
  (maximum of 12 credits applied towards the degree)
- ELECTIVES (15 credits), as identified by the thesis advisor or SPC

M.S. CSE PROFESSIONAL INTERNSHIP OPTION
(Computer Science and Engineering)

Participation is limited by available industrial internships. Students declaring this option must complete 45 credits of course work and up to an additional three credits of a professional internship (CS 504).

M.S. CSE DEPTH REQUIREMENTS

Depth of knowledge in the MS CSE Computer Science and Engineering concentration will be gained by pursuing a track or M.S. Thesis.

TRACKS

Students pursuing the non-thesis option must choose one of the three tracks defined below or consult their advisor or SPC to define a custom program.

ADAPTIVE SYSTEMS TRACK

- M.S. CSE BREADTH (listed above, 18 credits)
- ADAPTIVE SYSTEMS CORE (21 credits)

Required:
- CS 547 Statistical Pattern Recognition . . . . . . . 3 credits
- CS 552 Hidden Markov Models for . . . . . . . . 3 credits
- CS 559 Machine Learning . . . . . . . . . . . . . . 3 credits
- CS 560 Artificial Intelligence . . . . . . . . . . . . . 3 credits
- EE 586 Adaptive and Statistical . . . . . . . . . . . . 3 credits
- EE 589 Computer Vision
- MATH 519 Optimization . . . . . . . . . . . . . . . . 3 credits
- MATH 530 Probability and Statistical . . . . . . . . 3 credits
- Inference for Scientists and Engineers

M.S.C.E.E. | COMPUTER SCIENCE AND ELECTRICAL ENGINEERING

24
M.S. COMPUTER SCIENCE AND ENGINEERING – COMPUTATIONAL BIOSCIENCE CONCENTRATION

M.S. CSE NON-THESIS OPTION
(Computational Bioscience)

Students choosing the non-thesis option must complete the Computational Bioscience concentration core listed below and sufficient electives to equal a minimum of 15 courses and a minimum of 45 credits with a cumulative GPA of 3.0 or better. Up to six credits of non-thesis research (CS 501) may be included with the approval of the student’s advisor or Student Program Committee (SPC). The first three credits of non-thesis research may be counted as one class, with an additional three credits counting as a second class toward the 15-class requirement.

- M.S. CSE CB CORE (listed below)
- ELECTIVES

M.S. CSE THESIS OPTION
(Computational Bioscience)

Students choosing the thesis option must find a faculty member willing to serve as a thesis advisor. The department does not assign thesis advisors. The thesis option requires the Computational Bioscience concentration core listed below, a minimum of 45 credits and a cumulative GPA of 3.0 or better. A written thesis and oral defense is required.

- M.S. CSE CB CORE (listed below)
- ELECTIVES
- CS 503 M.S. THESIS RESEARCH

ELECTIVES

Select at least three:
- CS 555 Biological and Linguistic ....... 3 credits
- CS 556 Introduction to Human ....... 3 credits
- CS 560 Natural Language Processing ....... 3 credits
- CS 564 Developing User-Oriented Systems ....... 3 credits
- CS 567 Machine Learning ....... 3 credits

Or any CS, EE, BME, or MST (limit 2) class not already taken for Breadth or Track Core

M.S. COMPUTER SCIENCE AND ENGINEERING – COMPLEX SYSTEMS CONCENTRATION

M.S. CSE NON-THESIS OPTION
(Complex Systems)

Students choosing the non-thesis option must complete the Complex Systems concentration core listed below and sufficient electives to equal a minimum of 15 courses and a minimum of 45 credits with a cumulative GPA of 3.0 or better. Up to six credits of non-thesis research (CS 501) may be included with the approval of the student’s advisor or Student Program Committee (SPC). The first three credits of non-thesis research may be counted as one class, with an additional three credits counting as a second class toward the 15-class requirement.

- M.S. CSE CB CORE (listed below)
- ELECTIVES

M.S. CSE THESIS OPTION
(Complex Systems)

Students choosing the thesis option must find a faculty member willing to serve as a thesis advisor. The department does not assign thesis advisors. The thesis option requires the Complex Systems concentration core listed below, a minimum of 45 credits and a cumulative GPA of 3.0 or better. A written thesis and oral defense is required.

- M.S. CSE CB CORE (listed below)
- ELECTIVES
- CS 503 M.S. THESIS RESEARCH

ELECTIVES

Select at least three:
- CS 555 Biological and Linguistic ....... 3 credits
- CS 556 Introduction to Human ....... 3 credits
- CS 560 Natural Language Processing ....... 3 credits
- CS 564 Developing User-Oriented Systems ....... 3 credits
- CS 567 Machine Learning ....... 3 credits

Or any CS, EE, BME, or MST (limit 2) class not already taken for Breadth or Track Core

M.S. ELECTRICAL ENGINEERING – COMPUTER ENGINEERING AND DESIGN CONCENTRATION

The study of computer engineering produces expertise in a range of technologies from basic logic devices and the transistor circuits that implement them, Register-Transfer Level
and micro-architectural design, to computer architecture and software systems. The Computer Engineering and Design (CE&D) concentration is strongly oriented to silicon design, including the circuit to the register-transfer level, and the implementation of general and special purpose (such as signal processing) hardware.

For the M.S. EE degree in the Computer Engineering and Design concentration, students must complete a minimum of 48 credits with a cumulative GPA of 3.0 or better.

**M.S. EE NON-THESIS OPTION (Computer Engineering and Design)**

Students choosing the non-thesis option must complete the CE&D Concentration core listed below and a minimum of 24 credits from the elective courses listed below. Up to 6 credits of non-thesis research (EE 501) and/or independent study (EE 502) may be included with the approval of the student's advisor.

- **M.S. EE CE&D CORE (listed below)**
- **ELECTIVES, as identified by the advisor or SPC**

**M.S. EE THESIS OPTION (Computer Engineering and Design)**

Students choosing the thesis option must find a faculty member willing to serve as a thesis advisor. The department does not assign thesis advisors. Students must complete the CE&D concentration core listed below, 12 credits from the elective courses listed below, and 12 credits of M.S. Thesis Research (EE 503).

- **M.S. EE CE&D CORE (listed below)**
- **ELECTIVES, as identified by the advisor or SPC**
- **EE 503 M.S. THESIS RESEARCH (maximum of 12 credits applied towards the degree)**

### COMPUTER ENGINEERING AND DESIGN CONCENTRATION CORE

M.S. EE students in Computer Engineering and Design must complete the CE&D Concentration core sequence, consisting of the following courses or their equivalent (24 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 570</td>
<td>Advanced Logic Design</td>
<td>4</td>
</tr>
<tr>
<td>EE 571</td>
<td>System-on-Chip (SoC) Design with Programmable Logic</td>
<td>4</td>
</tr>
<tr>
<td>EE 572</td>
<td>Digital Systems Timing and Test</td>
<td>4</td>
</tr>
<tr>
<td>EE 573</td>
<td>Computer Organization and Design</td>
<td>4</td>
</tr>
<tr>
<td>EE 574</td>
<td>CMOS Digital VLSI Design I</td>
<td>4</td>
</tr>
<tr>
<td>EE 575</td>
<td>CMOS Digital VLSI Design II</td>
<td>4</td>
</tr>
</tbody>
</table>

### ELECTIVE COURSES IN COMPUTER ENGINEERING AND DESIGN

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 506</td>
<td>Any special topics course</td>
<td>4</td>
</tr>
<tr>
<td>EE 546</td>
<td>Design of Digital Circuits</td>
<td>4</td>
</tr>
<tr>
<td>EE 550</td>
<td>Introduction to Electronics</td>
<td>4</td>
</tr>
<tr>
<td>EE 551</td>
<td>Advanced Electronics</td>
<td>4</td>
</tr>
<tr>
<td>EE 561</td>
<td>Analog Integrated Circuit Design</td>
<td>4</td>
</tr>
<tr>
<td>EE 562</td>
<td>Digital Integrated Circuit Design</td>
<td>4</td>
</tr>
<tr>
<td>EE 563</td>
<td>Analog CMOS Integrated Circuit Design</td>
<td>4</td>
</tr>
<tr>
<td>EE 564</td>
<td>High Speed Interconnect Design</td>
<td>4</td>
</tr>
<tr>
<td>EE 565</td>
<td>Introduction to Wireless Systems</td>
<td>4</td>
</tr>
<tr>
<td>EE 577</td>
<td>Applied Hardware Verification</td>
<td>4</td>
</tr>
<tr>
<td>EE 580</td>
<td>Signals and Linear Systems</td>
<td>3</td>
</tr>
<tr>
<td>EE 582</td>
<td>Introduction to Digital Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>EE 584</td>
<td>Introduction to Image Processing</td>
<td>3</td>
</tr>
<tr>
<td>EE 586</td>
<td>Adaptive and Statistical Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>EE 587</td>
<td>Data and Signal Compression</td>
<td>3</td>
</tr>
<tr>
<td>MATH 530</td>
<td>Probability and Statistical Inference for Scientists and Engineers</td>
<td>3</td>
</tr>
</tbody>
</table>

A maximum of two of the Management in Science and Technology courses listed below:

- **MST 512** Project Management | 3 |
- **MST 520** Becoming an Effective Manager | 4 |
- **MST 573** Technology Marketing | 4 |

Students may petition their advisor or SPC for elective credit for other OGI CS, EE, BME or MST courses, or PSU ECE courses relevant to the theory or practice of computer engineering.

### SIGNAL PROCESSING

These elective courses provide depth in the design of circuits and algorithms for high speed signal processing. As computers become more diverse and move into more embedded applications and communication, they increasingly have to deal with real-world data, mostly in the form of single or higher dimensional signals. In this track students will learn techniques for designing specialized processing structures for such applications.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 580</td>
<td>Signals and Linear Systems</td>
<td>3</td>
</tr>
<tr>
<td>EE 582</td>
<td>Introduction to Digital Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>EE 584</td>
<td>Introduction to Image Processing</td>
<td>3</td>
</tr>
</tbody>
</table>

### M.S. ELECTRICAL ENGINEERING – SIGNALS AND SYSTEMS CONCENTRATION

The Signals and Systems (S&S) concentration offers a combination of traditional and modern signal processing core courses, supplemented with focused tracks in image processing, speech processing, and machine learning. The track and elective courses allow students to tailor their programs of study. Elective courses are from diverse areas such as biomedical engineering, speech systems, neural networks, and artificial intelligence. Core, track, and elective courses are taught by faculty with unique interdisciplinary backgrounds.

The MS EE degree in the Signals and Systems Concentration requires 45 credits for graduation with a cumulative GPA of 3.0 or better. Upon approval by the student’s advisor or SPC, alternative courses offered at OGI and some courses offered at PSU can be substituted towards graduation requirements.

### M.S. EE NON-THESIS OPTION (Signals and Systems)

Degree requirements for the non-thesis option are:

- **M.S. EE S&S Concentration core (listed below)**
- **Completion of the chosen track requirements (listed below)**
- **Sufficient elective credits to equal a total credit count of 45 for the degree**

Up to 6 credits of non-thesis research (EE 501) or independent study (EE 502) may be included with the approval of the student’s advisor or SPC.
M.S. EE THESIS OPTION (Signals and Systems)

Students choosing the thesis option must find a faculty member willing to serve as a thesis advisor. The department does not assign thesis advisors. Requirements for the thesis M.S. degree are:

- M.S. EE S&S Concentration core (listed below)
- A minimum of 6 to a maximum of 12 credits of EE 503 M.S. Thesis Research
- Completion of any of the below tracks, including sufficient electives to equal a total credit count of 45 for the degree
- Successful oral thesis defense

Up to 6 credits of non-thesis research (EE 501) or independent study (EE 502) may be included with the approval of the student’s advisor or SPC.

SIGNALS AND SYSTEMS CONCENTRATION CORE

Required core courses for all M.S. EE S&S tracks (12 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 547</td>
<td>Statistical Pattern Recognition</td>
<td>3</td>
</tr>
<tr>
<td>EE 580</td>
<td>Signals and Linear Systems</td>
<td>3</td>
</tr>
<tr>
<td>EE 586</td>
<td>Adaptive and Statistical Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>MATH 530</td>
<td>Probability and Statistical Inference for Scientists and Engineers</td>
<td>3</td>
</tr>
</tbody>
</table>

TRACKS

MACHINE LEARNING TRACK

The Machine Learning track provides a modern foundation based on statistical techniques including adaptive signal processing, statistical pattern recognition, time series analysis and prediction. The curriculum provides a strong basis in statistical fundamentals as well as a variety of classical and modern tools such as AR models, neural networks, genetic algorithms, and hidden Markov models.

Required Courses:

- CS 552 Hidden Markov Models for Speech Recognition
- CS 559 Machine Learning
- MATH 519 Optimization

Suggested Electives:

- BME 568 Auditory & Visual Processing
- CS 532 Analysis and Design of Algorithms
- CS 550 Spoken Language Systems
- CS 551 Structure of Spoken Language
- CS 552 Hidden Markov Models for Speech Recognition
- CS 553 Speech Synthesis
- CS 555 Biological and Linguistic Sequence Analysis
- CS 559 Machine Learning
- CS 560 Artificial Intelligence
- CS 562 Natural Language Processing
- CS 564 Introduction to Human-Computer Interaction
- CS 567 Developing User Oriented Systems
- EE 584 Introduction to Image Processing
- EE 586 Data and Signal Compression
- EE 588 Introduction to Biomedical Imaging
- GEN 569 Foundations of Computer Vision
- MATH 519 Optimization

SPEECH PROCESSING TRACK

The Speech Processing track encompasses all aspects of the synthesis and analysis of speech, including speech recognition, speech synthesis, speech enhancement, speaker recognition, language identification, spoken human-machine dialogue, and voice transformation. The Speech Processing track focuses on the core theories and applications, including spoken language systems, hidden Markov models, speech synthesis, natural language processing, machine learning, and adaptive and statistical signal processing.

Required Courses:

- CS 550 Spoken Language Systems
- CS 551 Structure of Spoken Language
- CS 552 Hidden Markov Models for Speech Recognition
- CS 553 Speech Synthesis
- EE 582 Introduction to Digital Signal Processing

Suggested Electives:

- BME 568 Auditory & Visual Processing
- CS 532 Analysis and Design of Algorithms
- CS 550 Spoken Language Systems
- CS 551 Structure of Spoken Language
- CS 552 Hidden Markov Models for Speech Recognition
- CS 553 Speech Synthesis
- CS 555 Biological and Linguistic Sequence Analysis
- CS 559 Machine Learning
- CS 560 Artificial Intelligence
- CS 562 Natural Language Processing
- EE 584 Introduction to Image Processing
- EE 586 Data and Signal Compression
- EE 588 Introduction to Biomedical Imaging
- EE 589 Foundations of Computer Vision
- GEN 569 Foundations of Computer Vision
- MATH 519 Optimization

PH.D. PROGRAMS IN COMPUTER SCIENCE AND ELECTRICAL ENGINEERING

Upon entry into the program a Student Program Committee (SPC) of three faculty members is formed. The student discusses feasible research areas and eventual research directions with the committee and together they chart an individualized course of study, based on the requirements outlined below.

The program of study for each Ph.D. student is tailored to meet individual needs and interests. Each student’s SPC provides academic advising and is in direct control of the student’s program of study. The SPC will work with the student to set and review goals on a twice-yearly basis. Students must write a progress report for all SPC meetings, except the first one.

Ph.D. students must obtain a grade of “B” or better in each required course. Ph.D. students must also complete a doctoral dissertation that documents a significant, original research contribution of publishable quality in both content and presentation.

In addition to the above requirements, the general OGI requirements for completing a
Ph.D. and the specific CS or EE requirements which follow, all CSEE students are required to pass a research-skills assessment. This is addressed through a research proficiency examination (RPE). The RPE requires a written and oral presentation of a research paper and usually takes place in the spring quarter of the second year of residence and after the student has completed the GEN 669 Scholarship Skills course. Upon successful completion of the RPE and the required coursework, Ph.D. students "advance to candidacy" and can then start on the dissertation research (CS 603 or EE 603).

Starting in the second year, the faculty strongly recommends that students deliver yearly research talks. The RPE, presentation at the student research symposium, the thesis proposal and talks at refereed conferences satisfy this expectation. Practice talks for conference papers should be open for commentary.

Following the RPE, the faculty strongly recommends that students prepare a formal thesis proposal that is presented publicly, with the dissertation committee in attendance, between 9 to 18 months before the Ph.D. defense. The proposal provides an opportunity for the student to receive feedback to ensure an acceptable level of intellectual vigor and maturity in the dissertation research.

The entire faculty reviews each Ph.D. student's academic progress annually.

Requirements for CSE Ph.D. Students:

Admission to the Ph.D. program in CSE generally requires a prior M.S. in Computer Science, or related field, whether from OGI or from another institution. Outstanding students who are admitted to the program with only a B.S. degree are required to complete the coursework for an M.S. EE degree at OGI. Completion of these credits can be spread out over multiple years to allow early involvement in research and independent studies.

EE Ph.D. students entering with a Masters degree should meet with their SPC committee to design an appropriate course of study. A minimum of 3 graded courses from OGI's EE program must be completed before taking the RPE exam.

All Electrical Engineering Ph.D. students must take GEN 669 Scholarship Skills and complete a minimum of 36 credits of Ph.D. dissertation research (EE 603).

Research Projects

Below is a sampling of current research going on in the Department. The specific research projects under way at any given time depend upon current interests and obligations of faculty, students and research sponsors.

Augmented Cognition

The AugCog project aims to create a closed loop brain-computer interface system that manipulates the interface between a human operator and the computer system to modify the task difficulty in order to maximize task performance. The closed-loop control signal relies on the estimated cognitive load of the human subject as assessed from ambulatory EEG measurements. The main challenge of this project is ambulatory EEG signal processing and cognitive state classification, since the mobile nature of most everyday tasks induce motion artifacts that are detrimental to traditional techniques developed for laboratory settings. A major aspect of our research is identifying task-relevant robust EEG channels and features using the maximum mutual information principle.

Erdogmus, Pável

Automated Scoring of the RO Complex Figure Test

The ROCF test is one of the standardized measures that are used for the clinical diagnosis of Attention Deficit Hyperactivity Disorder (ADHD). The subjects are asked to "memorize" this particular figure comprising of various geometric shapes and to redraw this image immediately after and thirty minutes after the memorization phase. The current standard qualitative scoring system that is used in the US is the BQSS, which forms the basis for our efforts in automatizing the scoring of this test.

Erdogmus

Automatic Spoken Language Analysis for Detecting Cognitive Impairment

Clinical research into Alzheimer's disease (AD) and the mild cognitive impairment (MCI) that precedes its full onset, is increasingly focused on early diagnosis and treatment that can delay or even prevent full onset of AD. Effective diagnosis requires differentiating between changes in cognitive and linguistic abilities that occur during normal aging and those that are due to impairment. Both manual linguistic analyses of spoken language samples and orally administered clinical exams are effective but costly methods for discriminating between healthy and MCI subjects. For widespread testing of the growing elderly population for markers of MCI, automation of testing procedures will be required.

The objective of the proposed project will be to develop statistical speech and language analysis techniques to automatically extract features from spoken language samples recorded during clinical examinations. Healthy and MCI elderly subjects of on-going studies at the Layton Center of OHSU take full neuropsychological examinations annually for life. We will request their permission to record and analyze these sessions, which include several tests of particular interest, including a delayed story recall test and a picture description task. We will transcribe the words and annotate syntactic structure for selected tests, and develop algorithms for automatically deriving features from the spoken language samples. These automatically-derived speech- and language-based features will then be used to build classifiers for discriminating between healthy and MCI subjects. In addition to test automation, the statistical speech and language processing techniques will provide two benefits of primary importance: inclusion of approximations to previously researched manually-derived features, and the use of unexplored features derived from statistical characteristics of the samples, such as a number of entropy-based features.

Roark
Bayesian Integrated Vision, Estimation, and Control for Unmanned Aerial Vehicles

Subtopics include: Vision-based feature extraction, nonlinear control, and Bayesian estimation using Sigma-Point Filters.

Song, Wan

Closed-Loop Control to Optimize Perfusion for Sepsis

Sepsis is defined as the systemic host response to infection resulting in the systemic inflammatory response syndrome. This project focuses on the continuous monitoring of hemodynamic parameters and automatic titration of therapy to control preload volume, contractility and afterload.

Wan

Coastal-Margin Observation and Prediction System

Since 1996, we have been developing CORIE, an observation and prediction system for the Columbia River ecosystem. The motivation is twofold. First, the Columbia River estuary and its near-shore plume are dominant oceanographic features of the northeastern Pacific Ocean and the focus of controversial ecosystem management issues. CORIE represents a novel, promising, and much needed infrastructure for physical and ecological research in this system. Second, we envision that observation and prediction systems will become central to the management of coasts and estuaries worldwide. The Columbia River is a challenging natural laboratory to test concepts and tools, and CORIE is a pilot system developed to anchor our observation and prediction research.

Lee

Creating the Next Generation of Intelligent Animated Conversational Agents

The goal of this project is to improve reading achievement of children with reading problems by designing computer-based interactive reading tutors that incorporate new speech and language technologies. The reading tutors will help English- and Spanish-speaking children learn to read by providing classroom teachers and reading specialists with tools to instruct and exercise the set of auditory, visual and linguistic skills needed to read, speech discrimination, speech production, phonological awareness, sound-to-letter mappings, vocabulary, fluency and comprehension. The tutors will be designed, tested and refined in collaboration with reading specialists and instructional designers, and tested with children in special education programs in elementary schools in Boulder, Colorado.

van Santen

Diagnostic Markers for Childhood Apraxia of Speech

This NIH-supported project focuses on automated methods for assessment of Childhood Apraxia of Speech. This disorder is a highly controversial disorder due to a lack of consensus on the features that define it and the etiologic conditions that explain its origin. The term Suspected Apraxia of Speech (sAOS) has been proposed as an interim term for this putative clinical entity. The point prevalence of sAOS in young children has been estimated at approximately 0.1%. The long-term objective of this proposal is to develop a valid, reliable, and efficient means to classify children as positive for sAOS. In addition to the contributions to theoretical explication of AOS, the software-based diagnostic tools resulting from this work will allow any certified speech-language pathologist to determine if a child's speech includes prosodic features that fall within a 95% confidence interval supporting the diagnosis of sAOS. The aim for this first period of planned programmatic research is to develop automated diagnostic markers for sAOS with clinically adequate sensitivity and specificity (> 90% positive and negative likelihood ratios). The four specific aims are: (a) to automate and improve the sensitivity and specificity of two existing (manually derived) prosodic markers, (b) to develop four additional automatic, prosody-based diagnostic markers, (c) to derive a single diagnostic index based on a statistical derivative from the six individual markers, and (d) to validate the composite diagnostic marker using classification data obtained from expert clinical researchers. Procedures are divided into four phases. In Year 1, automated versions of existing markers will be developed that determine speech-event locations using automatic speech recognition (ASR). Based on two pilot studies, this technique is expected to yield results equivalent to published data. The sensitivity of the markers will be improved by methods including normalizing by speaking rate and vowel identity. In Year 2, new automated markers will be created based on ASR and speech-signal processing techniques. These markers will measure variation in interstress timing, linguistic rhythm, speaking rate, and glottal-source characteristics. In the first part of Year 3, results from all six markers will be combined into a single diagnostic index using multi-layer perceptrons. In the latter part of Year 3, per-child errors will be evaluated to determine relationships between specific prosodic factors and the diagnosis of SAOS, providing insight into the features and definition of sAOS.

Hosom

Discriminative Syntactic Language Modeling: Automatic Feature Selection and Efficient Annotation

The focus of this proposal is on the effective use of parser-derived and tagger-derived features within discriminative approaches to language modeling for automatic speech recognition. Discriminative language modeling approaches provide a tremendous amount of flexibility in defining features, but the size of the potential parser-derived feature space requires efficient feature annotation and selection algorithms. The project has four specific aims. The first aim is to develop a set of efficient, general, and scalable syntactic feature selection algorithms for use with various kinds of annotation and several parameter estimation techniques. The second aim is to develop general tree and grammar transformation algorithms designed to preserve selected feature annotations yet lead to faster parsing or even tagging approximations to parsing. The third aim is to evaluate a broad range of feature selection and grammar transformation approaches on a large vocabulary continuous speech recognition (LVCSR) task, namely Switchboard. The final aim is to design and package the algorithms to straightforwardly support future research into other applications, such as machine translation (MT), and into other languages, such as Chinese and Arabic. The algorithms developed as a part of this project are expected to contribute to improvements in LVCSR accuracy and applications that rely upon this technology. The algorithms are being packaged into a publicly available software library, enabling researchers working in many application areas — including LVCSR and MT — and various languages to investigate best practices in syntactic language modeling for their specific task, without having to hand-select and evaluate feature sets.

Roark

Expressive and Receptive Prosody in Autism

This NIH-supported project focuses on automated technologies for assessment of prosodic ability in autism. Autistic Spectrum Disorders (ASD) forms a group of neuropsychiatric conditions whose core behavioral features include impairments in reciprocal social interaction, in communication, and repetitive, stereotyped, or restricted interests and behaviors. The importance of prosodic deficits in the adaptive communicative competence of speakers with ASD, as well as for a fuller understanding of the social disabilities central to these disorders is generally recognized; yet current studies are few in number and have significant methodological limitations. The objective of the proposed project is to detail prosodic deficits in young speakers with ASD through a series of experiments that address these disabilities and related areas of function. Key features of the project include: 1) the application of innovative technology. The study will apply computer-based speech and language technologies for quantifying expressive prosody, for computing dialogue structure, and for generating acoustically controlled speech stimuli for measuring receptive prosody; moreover, all experiments will be delivered via computer to ensure consistency of stimuli and accuracy of recording responses; 2) broad coverage of the dimensions of prosody. All three functions of prosody, grammatical, pragmatic, and affective, will be addressed; expressive and receptive tasks are included; and both contextualized tasks (dialogue, story comprehension and memory) and decontextualized tasks (e.g., vocal affect
Four-Dimensional Imaging and Analysis for the Study of Immune Responses

The recent development of video-microscopy technology for imaging immune responses within the eye is revolutionizing the way researchers are studying and understanding the immune mechanism. Such technology enables the visualization of T cell behavior in disease models without resorting to surgical trauma. The motion patterns of T cells are directly related to the cellular and chemical environment at the site of inflammation and thus can reveal the underlying disease mechanism. However, such technology needs the capability for computer-aided image processing and analysis due to images that are compromised by motion artifacts that obfuscate the true T cell motion. In addition, the current practice of manual tracking of the cell locations is a prohibitive task for massive numbers of images. The goal of this proposal is to develop image-processing techniques for tracking and characterizing cell motion in microscopic video of the ocular uveal tract. The specific aims are: (1) to develop techniques for image registration in order to stabilize images plagued with motion artifacts; (2) to develop computer-based image processing techniques to track cell motion; and (3) to statistically characterize cell motion. This research is a multidisciplinary collaboration that involves OHSU OGI and SOM investigators, who bring their expertise in ophthalmology, immunology, microscopy and image analysis to this effort. The data from these studies will constitute preliminary data for NIH proposals to study immune responses in four-dimensional microscopic imaging of the eye.

Song, Wan

Heart Function Characterization Through Combining Acoustic and Electrocardiogram Signals

This is a collaborative project with Inovise Medical Inc. The project uses a 12 lead ECG, including 2 acoustic microphones. The project is looking at the differential diagnosis between CHF and COPD.

Erdogmus, Wan

Machine Learning Approaches to Articulatory Inversion

Articulatory inversion is the problem of recovering the sequence of vocal tract shapes that produce a given acoustic utterance. Articulatory representations are useful for automatic speech recognition, speech production research, language therapy, and language learning. Articulatory inversion is a hard problem because different vocal tract shapes can produce the same acoustics, yet the articulatory trajectory must obey the mechanical constraints of the human vocal tract. Other examples of inversion problems over a sequence, which share the multivalued nature of the mappings and the existence of constraints, are: the recovery of facial gestures associated with a speech utterance; the inverse kinematics of a robot arm; and the recovery of 3D motion from video. This project approaches articulatory inversion from a machine learning standpoint, based on a framework introduced by the PI. The low-dimensional manifold in articulatory-acoustic space is represented in a probabilistic way by a density model estimated from data (recorded using a microphone and electromagnetic articulography). Multivalued mappings are explicitly represented by the modes of conditional distributions of this density, and the articulatory trajectory is disambiguated using a continuity constraint.

The project introduces new problems in dimensionality reduction, density estimation and regularization (such as multivalued regression and graph-learning from noisy data), and new models and algorithms. The expected results of this work are: performing basic research in machine learning, and introducing mapping inversion problems to research and education; improving articulatory inversion (for which code will be made freely available); and advocating data-driven approaches in speech production research and education.

Carreira-Perpinan

Making Dysarthric Speech Intelligible

This project will develop new algorithms that will enable dysarthric individuals to be more easily understood. Currently available devices are essentially spectral filters and amplifiers that enhance certain parts of the spectrum. While these can help certain types of dysarthria, many dysarthric persons suffer from speech problems that require forms of speech modification that are much more profound and complex such as: irregular sub-glottal pressure, resulting in loudness bursts that can be difficult to adjust to; absence, or poor control, of voicing; systematic mispronunciation of certain phoneme groups, resulting in certain sounds becoming indistinguishable or unrecognizable; variable mispronunciation; and poor prosody (pitch control, timing, and loudness). For these difficult problems, new approaches are needed that do not merely filter the speech signal but analyze it at acoustic, articulatory, phonetic, and linguistic levels.

Hosom, van Santen

Modeling in coastal oceanography

Many processes of interest in coastal oceanography are challenging to simulate. Particular difficulties exist when simulations are required near real-time, or over climate scales (i.e., multiple decades), or across scales such as in estuary-plume-shelf regions. Using realistic applications as motivation, we continuously seek the development of efficient and accurate numerical algorithms and associated techniques to improve modeling in coastal oceanography. Recent emphasis has been threefold. First, we have developed a twin set of open-community 3D baroclinic circulation models (SELFE and ELCIRC) that are progressively meeting the multiple scientific and operational requirements of CORIE, a Columbia River observation and prediction system. Second, we have developed a rapid-deployment forecasting system for estuary, which we are applying in the Pacific Northwest and across the country. Finally, we are developing fast, model- and variable-independent data assimilation techniques, by combining Kalman-filter, singular-value decomposition and machine-learning techniques.

Leen

Neurotechnology for Intelligence Analysts

The NIA project aims to exploit the superior target detection capabilities of the visual system of a trained intelligence analyst for robust and fast classification of large number of images into “target” and “no-target” stacks. At a higher level, this project is strongly connected the AugCog project, where the aim is to manipulate the interaction between the human and the computer system to maximize performance. The NIA project aims to leverage the strengths of both the human visual system and the current machine learning and signal processing technology to achieve this performance maximization goal for a specific application. Techniques that we focus on include wavelet-based time-frequency feature extraction and information theoretic nonlinear detection filters.

Erdogmus, Pavel

Novel Computerized Behavioral Assessment Methods for Attention Deficit Hyperactivity Disorder

This internally funded exploratory project focuses on building a computerized assessment system that has these features: a clear understanding of which neuropsychological functions are measured; interactivity (the computer adapts its behavior instantly to the subjects’ responses, thereby being able to operate at a level of optimal sensitivity); instantaneous and timed measurement of a range of behavioral responses including the force dynamics of button pushing and eye movements; mathematical modeling of the underlying cognitive processes in order to derive purer measures of the neuropsychological functions; a more motivating and shorter assessment process.

Black, Pavel, van Santen
Objective Methods for Predicting and Optimizing Synthetic Speech Quality

The project focuses on how humans perceive acoustic discontinuities in speech. Current text-to-speech synthesis ("TTS") technology operates by retrieving intervals of stored digitized speech ("units") from a database and splicing ("concatenating") them to form the output utterance. Unavoidably, there are acoustic discontinuities at the time points where the successive speech intervals meet. An unsolved problem is how to predict from the quantitative, acoustic properties of two to-be-concatenated units whether humans will hear a discontinuity. This is of immediate relevance for TTS systems that select units at run time from a large speech corpus. During selection, the systems search through the space of all possible sequences of units that can be used for the utterance and selects the sequence that has the lowest overall objective cost measure, such as the Euclidean distance between the final frame and initial frame of two units. However, research has already shown that this method and related methods do not predict well whether humans will hear a discontinuity. The current research, by being explicitly focused on perceptually optimized objective cost measures, will directly contribute to the perceptual accuracy of cost measures and hence to synthesis quality.

van Santen

Processing and Analysis of QCT Prostate Images for Study of Prostate Diseases

This is a pilot study for the analysis and characterization of prostate Quantitative Computer Tomography (QCT) images. Researchers will develop computer-based image processing techniques to extract the prostate region from QCT scans (segmentation) and characterize the prostate digitally. The data from these studies will constitute preliminary data for NIH grant proposals to study important questions related to prostate health as well as biomedical imaging. This study is significant because QCT analysis may permit not only the evaluation of QCT as a clinical screening and diagnostic tool, but should also open opportunities for the investigation of a variety of questions about prostate pathobiology. The novel image processing and analysis techniques developed in this proposal will also lead to methodologies applicable to general biomedical imaging problems.

Song

Prosody Generation for Child Oriented Speech Synthesis

This project focuses on innovative algorithms for generating highly expressive synthetic speech. Generating expressive speech involves three hard research problems. (i) Computation of abstract tags that specify, e.g., which words need emphasis, and phrasing (e.g., where to pause). (ii) Based on these tags, the system has to compute a fundamental frequency contour. (iii) Severe modification of the stored speech fragments ("acoustic units") to obtain these contours. The central goal of the project is to address these research problems, and create a TTS system that will make the next generation of TTS based language remediation systems viable.

Hosom, van Santen

Small Footprint Speech Synthesis

This project is in cooperation with Biospeech Inc., a Center for Spoken Language Understanding startup. The project aims to develop and implement a new algorithm in the area of text-to-speech synthesis (TTS) that will lead to (i) dramatic decreases in disk and memory requirements at a given speech quality level and (ii) minimization of the amount of voice recordings needed to create a new synthetic voice. Most current TTS systems operate by concatenating segments of recorded speech ("acoustic units"). A challenge for TTS is coarticulation: The dependency of the acoustic manifestations of a phoneme on its neighbors. Current TTS systems use multi-phone acoustic units such as diphones, which preserve coarticulatory patterns naturally present in speech. However, this approach requires a large amount of recordings and generates systems with large footprints. Biospeech proposes a uniphone approach that addresses coarticulation processes with an explicit model. The method uses complex spectral vectors (basis vectors) representing brief segments of speech inside single phonemes, and decomposes these into two components: A formant vector and a spectral balance vector. To generate speech, the formant and spectral balance vectors derived from the basis vectors corresponding to successive phonemes are subjected to separate—and hence generally asynchronous—interpolation operations using time varying weights; the formant and spectral balance vector trajectories thus created are re-combined to create a trajectory in complex spectral space; finally, this trajectory is converted into output speech with the inverse Fourier transform. Asynchronicity is necessitated by the quasi-independence of articulators underlying different spectral features (e.g., frication, formant frequencies). The proposed work has implications for other speech technologies, including Automatic Speech Recognition (ASR). Current ASR technologies address coarticulation by using multi-phone units, typical triphones. The number of triphones in English is over 70,000, and thus requires a large amount of training recordings. The proposed model could dramatically impact on the amount of recordings required for system training. Second, TTS has generally recognized societal benefits for universal access, education, and information access by voice. For example, TTS-based augmentative devices are available for individuals who have lost their voice; and reading machines for the blind have been available for several decades. Third, the approach will make higher-quality TTS more available for smaller devices. For example, voice based caller ID on low-end mobile telephones is currently not possible due to memory limitations. Fourth, it enables voice adaptation with a minimum of recordings. This will enable building personalized TTS systems for individuals with speech disorders who can only intermittently produce normal speech sounds or for individuals who are about to undergo surgery that will irreversibly alter their speech. The method proffered by Biospeech only requires recordings of valid samples of each of (less than 50) phonemes instead of each of (2000 or more) diphones.

van Santen

RESEARCH CENTERS AND LABS

ADAPTIVE SYSTEMS

The work on adaptive systems includes theoretical, algorithmic, scientific and practical aspects. Research on theory and algorithms for machine learning includes supervised, unsupervised and
reinforcement learning; neural networks; genetic algorithms; generalization theory (model selection and pruning, invariant learning and theoretical characterization); stochastic optimization; local and mixture models; time series; control; and context sensitive learning. Research on biological and cognitive modeling includes the effect of noise on learning in neural circuits, cognitive models of visual pattern recognition and analogy-making, and modeling of evolutionary systems. Practical applications of the research in these areas include speech and image processing, medical screening technology, environmental forecasting and observation systems, anomaly detection for aeronautics, aircraft control, sensor fusion and optimization, and automatic programming.

Miguel Carreira-Perpiñán
Deniz Erdogmus
Todd Leen
Melanie Mitchell
Pat Roberts
Xubo Song
Eric Wan

CENTER FOR SPOKEN LANGUAGE UNDERSTANDING

The research program of the Center for Spoken Language Understanding encompasses a broad range of speech technologies. Such research is inherently multidisciplinary, and the center brings together a team with expertise in signal processing, speech recognition, speech synthesis, dialog modeling, natural language processing, multimodal systems, linguistics and human-computer interaction.

This program focuses on specific problem areas such as: multimodal, interactive reading tutors for children with reading or hearing problems; robust methods for enhancing speech in noisy environments; large vocabulary recognition of continuous speech, as in broadcast news; unit selection and voice conversion for more realistic speech synthesis; robust parsing and interpretation of spoken and multimodal input; modeling of disfluencies in spontaneous speech; and effective methods for dialog management.

The Center for Spoken Language Understanding participates in the Masters and Ph.D. programs of study in the Departments of Biomedical Engineering and Computer Science and Electrical Engineering. Students who are interested in earning a Masters or Ph.D. degree in biomedical engineering, computer science and engineering, or electrical engineering, with specialization in spoken language understanding, should consult the catalog information for those programs and contact an advisor in the Center for Spoken Language Understanding, the Department of Biomedical Engineering or the Department of Computer Science and Electrical Engineering.

Peter Heeman
Paul Hosom
Brian Roark
Jan van Santen
JOHN-PAUL HOSOM
Assistant Professor
Ph.D., Computer Science & Engineering
Oregon Graduate Institute, 2000
hosom@csuogi.edu

RESEARCH INTERESTS
Automatic speech recognition, time alignment of phones, acoustic analysis of speech, assistive technology, speech-based diagnosis.

REPRESENTATIVE PUBLICATIONS

ALEXANDER KAIN
Assistant Scientist
Ph.D., Computer Science & Engineering
Oregon Graduate Institute, 2001
kain@csuogi.edu

RESEARCH INTERESTS
Text-to-speech Synthesis, Speaker Conversion, Transformation of Dysarthric Speech; Speech Processing for Hearing-aid.

REPRESENTATIVE PUBLICATIONS

JOHN LAUNCHBURY
Professor Emeritus
Ph.D., Electrical Engineering
University of Washington, 1961
dick@csuogi.edu

RESEARCH INTERESTS
Functional programming; program transformation; domain-specific languages; program verification; high-confidence software.

REPRESENTATIVE PUBLICATIONS
RESEARCH INTERESTS
Machine Learning: Local and mixture models, stochastic learning, and Bayesian methods with applications to environmental sensor network monitoring, data and model/data fusion, and fault detection. Computational neuroscience.

REPRESENTATIVE PUBLICATIONS


RESEARCH INTERESTS
Formal verification; theorem proving; model checking; specification languages; functional and constraint logic programming languages.

REPRESENTATIVE PUBLICATIONS


RESEARCH INTERESTS
Syntactic parsing of text and speech; language modeling for automatic speech recognition; supervised and unsupervised learning of language and parsing models; weighted finite-state approaches to language processing, models of human language processing.

REPRESENTATIVE PUBLICATIONS


RESEARCH INTERESTS
Automatic speech recognition, acoustic modeling, spoken structure and metadata detection, modeling prosody for speech recognition and parsing, semi-supervised learning, human language technology in health and medicine.

REPRESENTATIVE PUBLICATIONS


**XUBO SONG**
Assistant Professor
Ph.D. Electrical Engineering
California Institute of Technology, 1999
xubosong@csee.ogi.edu

**RESEARCH INTERESTS**
Image processing and analysis, with applications to biomedical imaging. Statistical pattern recognition, Machine learning, Biomedical engineering.

**REPRESENTATIVE PUBLICATIONS**
Song X.B., Yang K., Pavel M., "Robust Density Estimation via Boosting", Proceedings of International Conference on Neural Information Processing, 2004

**ERIC A. WAN**
Associate Professor
Ph.D., Electrical Engineering
Stanford University, 1994
ericwan@csee.ogi.edu

**RESEARCH INTERESTS**
Learning algorithms and architectures for neural networks and adaptive signal processing; applications to time-series prediction, speech enhancement, adaptive control and telecommunications.

**REPRESENTATIVE PUBLICATIONS**

**JOHN M. HUNT, M.S.**
Electrical Engineering
Johns Hopkins, 1979
johnhunt@csee.ogi.edu

**RESEARCH INTERESTS**
Applications in speech enhancement, adaptive control and telecommunications.

**REPRESENTATIVE PUBLICATIONS**

**JOHN D. LYNCH, B.S.**
Electrical Engineering
University of Utah, 1979
jdlynch@csee.ogi.edu

**REPRESENTATIVE PUBLICATIONS**

**ERIC A. WAN**
Associate Professor
Ph.D., Electrical Engineering
Stanford University, 1994
ericwan@csee.ogi.edu

**RESEARCH INTERESTS**
Learning algorithms and architectures for neural networks and adaptive signal processing; applications to time-series prediction, speech enhancement, adaptive control and telecommunications.

**REPRESENTATIVE PUBLICATIONS**

**JOHN M. HUNT, M.S.**
Electrical Engineering
Johns Hopkins, 1979
johnhunt@csee.ogi.edu

**REPRESENTATIVE PUBLICATIONS**

**JOHN D. LYNCH, B.S.**
Electrical Engineering
University of Utah, 1979
jdlynch@csee.ogi.edu

**REPRESENTATIVE PUBLICATIONS**

**ERIC A. WAN**
Associate Professor
Ph.D., Electrical Engineering
Stanford University, 1994
ericwan@csee.ogi.edu

**RESEARCH INTERESTS**
Learning algorithms and architectures for neural networks and adaptive signal processing; applications to time-series prediction, speech enhancement, adaptive control and telecommunications.

**REPRESENTATIVE PUBLICATIONS**
ADJUNCT FACULTY

AHMAD ARABI
Consultant

ROBERT BAUER
Rational Software Corp.

C. MIC BOWMAN, PH.D.
Intel Corporation

SHEKHAR BORKAR
Intel Corporation

BRENT CAPPSC ZENOBIA
Oregon Master of Software Engineering

PHIL COHEN, PH.D.
Natural Interaction Systems

ANREW GILL, PH.D.
Gabros

HOWARD HECK
Intel Corporation

MARWAN JABRI, PH.D.
Industry Consultant

NAM SUNG KIM
Intel Corporation

ROY KRAVITZ
RadiSys Corporation

SAVA KRSTIC, PH.D.
Intel Corporation

JAMES LARSON, PH.D.
Intel Corporation
Larson Technical Services

SUDARSHAN MURTHY
Portland State University

SHARON OVIATT, PH.D.
Consultant

SANJEEV QAZI
Intel Corporation

KARTIK RAOL
Intel Corporation

STEWARD TAYLOR
Maxim

THOMAS THOMAS
Intel Corporation

JAMES TSCHANZ
Intel Corporation

REBECCA WIRFS-BROCK
Wirfs-Brock Associates

MAZIN YOUSIF, PH.D.
Intel Corporation

MICHAEI ZASLAVSKY
Intel Corporation
The mission of the **Department of Environmental and Biomolecular Systems** is to study physical, chemical and biological processes that occur naturally or result from the interaction of humans with the environment, emphasizing approaches that are possible through novel advances in biomolecular, genetic, computational and information sciences and technology.

Three over-arching goals characterize our research and education programs:

- Fundamental understanding of processes at molecular, cellular and particle levels
- Integrative, process-based understanding of ecosystems and other complex environmental and biological systems
- Effective integration of science in society’s approaches to ecosystem health, human health, and economic development

Prospective students are asked to carefully examine faculty research interests and departmental research programs to determine whether their specific professional goals can be fulfilled at OGI in the Department of Environmental and Biomolecular Systems. Communication with individual faculty members is encouraged before applying or enrolling.

**DEGREES OFFERED**

The EBS department offers four degrees:

- Master of Science in Environmental Science and Engineering  
  *Optional Environmental Information Technology Track*
- Doctor of Philosophy in Environmental Science and Engineering  
  *Optional Environmental Information Technology Track*
- Master of Science in Biochemistry and Molecular Biology
- Doctor of Philosophy in Biochemistry and Molecular Biology

M.S. degrees are available in the thesis or non-thesis options. The thesis option generally requires up to eight academic quarters, and the non-thesis option can generally be completed in four academic quarters.

**ENVIRONMENTAL SCIENCE AND ENGINEERING (ESE)**

The ESE degree balances practical applications with fundamental investigations of the physical, chemical and biological processes underlying environmental phenomena. Degrees in Environmental Science and Engineering prepare students for careers in environmental management, practice, or research. The curriculum is highly interdisciplinary and is built on a solid foundation of fundamental science and engineering.

**ENVIRONMENTAL INFORMATION TECHNOLOGY (EIT) TRACK**

The EIT track combines the expertise and coursework found in the Department of Environmental and Biomolecular Systems and in the Department of Computer Science and Electrical Engineering (CSEE). The goal of the EIT track is to combine a deep understanding of environmental processes with mastery of sensing, modeling and information technology. The EIT curriculum includes fundamental courses, science courses, technology courses, electives and capstone integrative courses.

**BIOCHEMISTRY AND MOLECULAR BIOLOGY (BMB)**

The BMB degree offers students immediate participation in research upon entering. Degrees in Biochemistry and Molecular Biology prepare students for careers in the biotechnology industry; academic, medical, and corporate research; and can meet the advanced technical degree requirement for patent attorneys.

---

Dr. Paul Tratnyek’s research on the biogeochemistry of sediments is an example of how molecular scale science relates to the regional scale science that is the focus of the EBS Department’s new NSF Science and Technology Center on Coastal Margin Observation and Prediction. Shown in the background is a rotating annular flume containing coastal sediment.
ADMISSION REQUIREMENTS

In addition to the general OGI admission requirements, the Department requires the following:

ENVIRONMENTAL SCIENCE AND ENGINEERING (M.S. AND PH.D.)

GRE general scores are required. GRE subject scores are not required. TOEFL minimum score is 600 for the paper-based test, 250 for the computer-based test, or 100 for the internet-based test.

BIOCHEMISTRY AND MOLECULAR BIOLOGY (M.S.)

GRE scores are not required. TOEFL minimum score is 550 for the paper-based test, 213 for the computer-based test, or 80 for the internet-based test.

APPLYING DEADLINES

Applications are accepted year-round. Ph.D. applications received by the first workday in January (following the New Year holiday) will have priority consideration for financial assistance. M.S. applications for the Biochemistry and Molecular Biology program are advised to seek fall quarter admission due to the sequence of required courses; admission in other quarters will be decided on a case-by-case basis. Ph.D. applications for admission in quarters other than fall are considered on the basis of available space and financial assistance.

CREDITS FROM OTHER OHSU DEPARTMENTS

Up to eight credits from courses taken in other OHSU departments may be applied to the BMB or ESE programs. The Student Program Committee (SPC) must first approve the credits from other OHSU departments.

DEPOSIT

Upon acceptance to the EBS Department, students in the M.S. programs are required to pay a nonrefundable deposit of $100, which will be applied to the tuition payment for the first academic quarter.

LAB FEE

A lab fee of $300 per quarter is assessed to all M.S. students in the EBS Department during the quarters in which they are registered for research credits.

DEGREE REQUIREMENTS

ENVIRONMENTAL SCIENCE AND ENGINEERING

Students may pursue the Ph.D. program or M.S. program (non-thesis or thesis) in Environmental Science and Engineering (ESE). Within the ESE degree, a student may focus on the specialty track of Environmental Information Technology (EIT). Students who complete the EIT track receive their degree in Environmental Science and Engineering and complete different course distribution requirements.

Full-time in-residence M.S. and Ph.D. students are required to enroll in the EBS Department Seminar (EBS 507A/607A) each academic quarter, except summer. This non-credit course does not count toward degree credit requirements and there is no additional tuition charged for this course.

Courses in other departments and schools within OHSU may be substituted for the core course requirements with permission of the SPC. The SPC may also require additional courses selected with the approval of the SPC. The SPC may also require additional courses based upon the particular research interests and needs of the student.

M.S. IN ENVIRONMENTAL SCIENCE AND ENGINEERING

M.S. NON-THESIS OPTION

Students pursuing the M.S. non-thesis option in ESE must complete at least 45 credit hours of coursework. These credits include the distribution requirements (listed below) and additional courses selected with the approval of the Student Program Committee (SPC).

M.S. THESIS OPTION

Students pursuing the M.S. thesis option in ESE must complete at least 45 credits of coursework. These credits include the distribution requirements (listed below), additional courses selected with the approval of the SPC, and research credits. M.S. thesis research (EBS 503) is usually no more than nine credits. A written M.S. thesis with an oral defense is required. Comprehensive examinations are not required.

PH.D. IN ENVIRONMENTAL SCIENCE AND ENGINEERING

Ph.D. students must complete at least 52 credit hours of coursework. These credits include the distribution requirements (listed below) and additional courses selected with the approval of the SPC. Ph.D. candidates must pass a two-part comprehensive examination. The first part is a written examination covering four subject areas selected by the department. The second part is the preparation and oral defense of a proposal that defines the student’s Ph.D. dissertation research. A written Ph.D. dissertation with an oral defense is required.

ESE DISTRIBUTION REQUIREMENTS

To achieve the necessary breadth in training, M.S. and Ph.D. ESE students take courses that cover a range of scientific disciplines and environmental media. Five courses must be taken to satisfy the following distribution requirements. No course can satisfy more than one requirement. The following courses are representative of the courses available in each discipline. Alternative courses may be accepted towards distribution requirements with approval from the Student Program Committee.

At least 1 course must be taken from 3 of the following 4 discipline groups:

APPLIED MATHEMATICS

EBS 547/647 Uncertainty Analysis
EBS 550/650 Environmental Systems Analysis
EBS 555/655 Computational Fluid Dynamics
EBS 561/661 Introduction to Spatial Sciences
MATH 511/611 Introduction to Discrete Numerical Methods
Students pursuing the M.S. non-thesis option must satisfactorily complete at least 44 credits; 28 in graded courses and 16 derived from an experimental research project (EBS 501), and complete a written report on the research. The 28 credits in graded courses must include (12 credits):

- EBS 512 Biochemistry I: Proteins and Enzymes
- EBS 513 Biochemistry II: Introduction to Molecular Biology
- EBS 514 Biochemistry III: Metabolism and Bioenergetics

Plus 16 or more credits in Advanced courses (EBS 525 - 598)
- Student Seminars (EBS 507B or 507C)
- Reading Groups (EBS 505A, B, C, D)
- Special Topics (EBS 506)

Research for the M.S. non-thesis option is typically a specific contribution to a larger project, providing the student with extensive hands-on experience in biochemical and molecular biological techniques.

**M.S. THESIS OPTION**

The M.S. thesis option is a research degree that requires satisfactory completion of at least 44 credits; 20 of which are in graded courses, and a written thesis and oral defense, based on independent research (EBS 503).

The 20 credits in graded courses must include (12 credits):

- EBS 512 Biochemistry I: Proteins and Enzymes
- EBS 513 Biochemistry II: Introduction to Molecular Biology
- EBS 514 Biochemistry III: Metabolism and Bioenergetics

Plus 8 or more credits in Advanced courses (EBS 525 - 598)
- Student Seminars (EBS 507B or 507C)
- Reading Groups (EBS 505A, B, C, D)
- Special Topics (EBS 506)

**PH.D. IN BIOCHEMISTRY AND MOLECULAR BIOLOGY**

Ph.D. students are required to take:

- EBS 612 Biochemistry I: Proteins and Enzymes
- EBS 613 Biochemistry II: Introduction to Molecular Biology
- EBS 614 Biochemistry III: Metabolism and Bioenergetics

Plus three of the following core courses:

- EBS 625 Bioenergetics and Membrane Transport
- EBS 626 Enzyme Structure, Function and Mechanisms
- EBS 640 Instrumental Methods in Biophysics I
- EBS 685 Advanced Molecular Biology
- EBS 687 Molecular Cell Biology

Ph.D. Students must register for 12 credits per academic quarter. These credits typically include available courses, Student Seminars (EBS 607B or 607C), and Research (EBS 601 or 603).

The qualifying examination for the Ph.D. is a comprehensive examination in Biochemistry. It must be completed within 2 years of entering the school.

A written Ph.D. dissertation with an oral defense is required.

**RESEARCH PROGRAMS**

(alphabetically by faculty name)

**Science and Technology Center for Coastal Margin Observation and Prediction**

The mission of the Science and Technology Center for Coastal Margin Observation and Prediction is to study coastal margins using integrated observation and prediction technologies as critical infrastructure for research, education, and knowledge transfer. Lead institutions in the Center are OHSU, Oregon State University and the University of Washington. The Center will advance the understanding of coastal margins in general and of the Pacific Northwest coastal margin in particular by creating the scientific infrastructure necessary to obtain reliable quantitative descriptions and analyses of integrated physical, chemical, and biological variables in estuaries, freshwater plumes, and continental shelves. Through integrated activities in the areas of interdisciplinary research, technology development, education, and knowledge transfer, the Center will enable a nearly ubiquitous, river-to-ocean observation of physical and ecological processes and to further our understanding of these processes in order to manage, operate, and sustain coastal resources and ecosystems effectively.

Baptista and multi-institutional collaborators

**Ocean Survival of Salmonids Relative to Migrational Timing, Fish Health and Oceanographic Condition**

Interannual variation in ocean recruitment of salmon is high and thought to be associated with variation in nearshore ocean conditions. The nearshore ocean environment, particularly that associated with the Columbia River plume, is a critical habitat to outmigrating juvenile salmon. Several investigators have suggested that survival during the first year of ocean life is a key to establishing year-class strength. In the case of...
salmonids originating in the Columbia River Basin, survival success hinges on the complex interaction of smolt quality and the abiotic and biotic ocean conditions at the time of entry and during their first year of ocean existence. This research hypothesizes that variation in the physical and biological conditions of the nearshore environment, particularly that associated with the Columbia River plume, affects overall survival of Columbia River stocks. Further, the research hypothesizes that primary factors driving the variation in the nearshore environment include (a) food availability and habits; (b) time of entry, smolt quality and growth and bioenergetic status at the time of entry and during the first growing season in the ocean; and (c) predation (a companion study on predation on juvenile salmon is ongoing). This project will characterize, over a 10-year period, the physical and biological features of the nearshore ocean environment with real-time and modeling projections of the Columbia River plume as it interacts with the coastal circulation regime, and will relate these features, both spatially and temporally, to variation in salmon health, condition and survival.

Baptista and multi-institutional collaborators (PI: E. Casillas, NOAA Fisheries)

Estuarine Habitat and Juvenile Salmon — Current and Historic Linkages in the Lower Columbia River and Estuary

Estuaries are considered important to rearing of juvenile salmon and represent an integral component of the continuum of habitats that salmon occupy for significant periods of time. However, there is a general lack of science-based information concerning attributes of these tidal freshwater and oligohaline transition zones needed to support juvenile salmon, particularly in the Columbia River estuary. Further, recent evidence supports the concern that flow in the Columbia River significantly affects the availability of estuarine habitats, that flow is much reduced compared to historic levels, and that seasonal flow patterns are much different now than a century ago. The long history of wetland loss in the Columbia River estuary coupled with change in flow patterns suggests that restoration of the habitats may benefit recovery of depressed salmon stocks. The need to develop effective restoration strategies led us to propose empirically identifying the benefit of these habitats to juvenile salmon by evaluating habitat-smolt linkages in the lower Columbia River and estuary. We are conducting a monitoring approach to identify associations between salmon and habitat in the lower Columbia River and estuary.

Baptista and multi-institutional collaborators (PI: D. Bottom, NOAA Fisheries)

A Pilot Coastal Ocean Observatory for the Estuaries and Shores of Oregon and Washington

OHSU and 7 regional partner institutions are taking an important step towards the development of an operational coastal ocean observatory to address the scientific information needs of federal, state and local agencies responsible for natural resource management and land-use planning in coastal communities of the Pacific Northwest (PNW). Consistent with the goals and charter of the Northwest Association of Networked Ocean Observing Systems (NANOOS), the NANOOS Pilot project is integrating and expanding existing but disparate observation and modeling capabilities for the estuaries and shores of Oregon (OR) and Washington (WA). Through this pilot project, we are exploring issues of governance and coordination, certification and quality control, maintenance, expandability, and data dissemination, while seeking an effective balance between (a) local and intra-regional innovation and customization and (b) inter-regional and national standardization and economies of scale.

Baptista and multi-institutional collaborators

Collaborative Research: Productivity, Biogeochemical Transformations and Cross-Margin Transport in an Eastern Boundary Buoyant Plume Region (also known as RISE, River Influences on Shelf Ecosystems)

River plumes significantly alter nutrient supply, plankton growth rates and standing stocks as well as enhance material export from productive coastal areas across the continental margin. Because the typical (upwelling-favorable) wind stress and ambient currents act to move plumes away from the coast during high production periods, cross margin export is extremely effective on eastern boundaries. In this proposal we focus on a highly productive Eastern Boundary river plume, the Columbia — a plume sufficiently large to be of regional importance, yet small enough to allow determination of dominant processes affecting river plumes, and to facilitate rate comparisons with regions outside the plume.

Our study is designed to address the following three hypotheses:

- During upwelling the growth rate of phytoplankton within the plume exceeds that in nearby areas outside the plume being fueled by the same upwelling macronutrients.
- The plume enhances cross-margin transport of plankton and nutrients.
- Plume-specific nutrients (iron and silicate) alter and enhance productivity on nearby shelves.

Baptista and multi-institutional collaborators (PI: B. Hickey, University of Washington)

Chemistry of Copper-Containing Enzymes

Increasing numbers of important enzymes are known to contain copper at their active sites. Of particular interest are enzymes involved in neurotransmitter biosynthesis and metabolism (including important neurotransmitters such as nor-adrenaline and amphetamine); enzymes protecting against oxidative cellular damage caused by reactive oxygen metabolites; and enzymes catalyzing the biosynthesis of neuropeptide hormones. A major goal is to understand the catalytic role of copper and the molecular mechanism of oxygen binding and utilization by these oxidase and oxygenase enzymes. In our laboratory we overexpress wild-type and mutant proteins in mammalian cell culture using large-scale hollow fiber bioreactors, purify them to homogeneity, and study them using a variety of physical and kinetic methods which include high pressure liquid chromatography (HPLC), mass spectrometry (MS), electron paramagnetic resonance (EPR), Fourier transform infrared (FT-IR) and X-ray absorption spectroscopy (XAS). The XAS technique is performed at the Stanford Synchrotron Radiation Laboratory (http://www-ssrl.slac.stanford.edu/), which is a national user facility.

Blackburn

Cellular Transport and Regulation of Metal Ions

Metal ions such as iron and copper play an essential role in many cellular processes including energy production, biosynthesis and antioxidant. The key to their usefulness as enzyme cofactors lies in their ability to catalyze redox reactions, but this very chemistry introduces the need to tightly regulate the speciation, concentration and transport of cellular metal ions, since the free ions are themselves cytotoxic. Our lab is involved in deducing the molecular mechanism of metal ion transport. Copper enters the cell through the transporter CTR1 and is then partitioned between a number of small molecule metallochaperone molecules (CGS, COX17, SCO1, HAH1) which selectively metalate target copper enzymes (e.g., SOD1, cytochrome c oxidase), or P-type ATPases (MVK, WND) which provide further transport machinery for metalation of secreted proteins. Through application of advanced spectroscopic techniques such as X-ray absorption and mass spectrometry we are studying the mode of copper binding and transport within a number of these chaperone-target systems. Part of this research involves developing semisynthetic methods for incorporation of Se as selenocysteine into the
metallochaperones which will provide us with a unique probe of metal coordination via Se- and Cu-K absorption edge spectroscopy. These studies will lead to a better understanding of the molecular mechanisms of metal-ion homeostasis and will aid in combating diseases (Menkes, Wilson, ALS) believed to be associated with aberrant metal ion regulation.

Blackburn

**Symbionts of Marine Invertebrates: Biosynthetic Sources of Bioactive Natural Products**

Marine invertebrates are rich sources of bioactive metabolites, which they often use for chemical defense. Many of these compounds have great promise as drugs, but are difficult to develop because of problems in obtaining sufficient quantities from wild-collected animals. Based on our research, it is now apparent that, in many cases, bioactive metabolites of invertebrates are biosynthesized by microbial symbionts that are maintained by the invertebrate host and frequently are passed directly from one generation to the next. In this project we study the basic biology of these systems: their structure and function, how they evolved, and how they function in nature, as well as how to exploit them to provide robust supplies of compounds for drug development. Specific subprojects include the study of bryostatin biosynthesis by Endobugula species in bryozoans of the genus Bugula, ecteinascidin biosynthesis by symbionts of ascidians of the genus, Ecteinascidia, and cyclic peptide biosynthesis by Prochloron didemnin ascidians of the genus Lissoclinum, as well as a variety of complex multi-microbe symbioses in sponges.

Haygood

**Iron Acquisition by Marine Bacteria**

Iron is much less abundant in the ocean than in most terrestrial and freshwater environments. Iron availability is believed to have an important influence on the productivity of the oceans, as well as on the types of microorganisms that can live in various marine environments. The chemistry of iron in the ocean is still poorly understood, but there is an emerging consensus that iron is largely complexed by organic compounds in seawater, thus affecting the chemical behavior of iron, as well as its availability to organisms. Many microorganisms secrete strong iron-binding compounds, called siderophores, when stressed by low iron. Such siderophores could contribute to iron complexation in seawater. We are studying siderophore production by marine bacteria to determine whether siderophores participate in iron complexation in seawater, and what environmental conditions control their production. Specific subprojects include investigation of the microbial community associated with the colonial nitrogen-fixing cyanobacterium Trichodesmium, a major source of fixed nitrogen in oligotrophic tropical oceans, and the role of the community in iron supply to the colony; genomic analysis of siderophore production and iron regulation in the marine cyanophaga Microcystis marina, a common species in marine particles; and identification of novel siderophores from marine bacteria.

Haygood

**Remediation of Explosives in Groundwater Using Passive In Situ Permeable Reactive Barriers**

Groundwater contamination associated with the use of explosives (e.g., TNT) is widespread at many Department of Defense sites. Research in our laboratories has shown that explosives can be rapidly destroyed in situ using zero-valent iron (ZVI). When ZVI is placed in the subsurface as part of a permeable reactive barrier, it can prevent the migration of explosives in groundwater for decades in a manner that is completely passive.

Johnson and Tratnyek

**Simulation of Subsurface Processes Using Very Large Scale Experimental Aquifers**

Many important chemical, physical and biological processes are difficult to study in the laboratory because of problems of scaling. Many of these processes are also difficult to characterize in the field, because of the complex and uncontrolled nature of environmental systems. For these reasons, OGI has established the Large Experimental Aquifer Program (OGI/LEAP). At present, the facility consists of five large aquifers used to examine the movements of organic solvents and petroleum compounds in the unsaturated and saturated porous media. Future LEAP aquifers will examine inorganic geochemistry and the interactions between chemical, biological and physical processes in contaminated aquifers.

Johnson and other faculty

**Gas-Phase Transport in Unsaturated Porous Media**

Gas-phase transport is important in controlling many subsurface processes, including respiration, pesticide behavior and contaminant volatilization and movement. Laboratory experiments have been conducted to determine diffusion rates of a variety of organic compounds in porous media and the kinetics of adsorption and desorption for a variety of soil types and a range of water contents.

Johnson

**Multiphase Monitoring of Gasoline Movement Using a Very Large Physical Model (OGI/LEAP)**

Leaks from underground storage tanks (UST) represent a major ongoing source of groundwater contamination. The rapid detection of leaks is, therefore, a major goal of UST legislation. The OGI/LEAP facility is used to study the movement of gasoline components in the vapor, aqueous and pure-product phases. This work will help establish which of a variety of leak-detection technologies is best suited to detect leaks under a range of environmental conditions.

Johnson

**Vibrational Spectroscopy of Metalloprotein Reaction Intermediates**

The experimental characterization of reaction intermediates is essential to decipher biological catalytic processes. It is also critical to validate theoretical models that can eventually map the entire coordinates of these biochemical reactions. The vast majority of catalytic reactions involve metalloenzymes. X-ray crystal studies are required to elucidate complete structures of these proteins, but spectroscopic techniques are used to better define the structural details of the protein active sites. In particular, resonance Raman (RR) and Fourier-transform infrared (FTIR) vibrational spectroscopic methods can define submolecular interactions in enzyme-substrate complexes. Using a rapid freeze-quenching set-up, reaction intermediates with lifetimes in the millisecond range can be investigated. For example, we defined the first reaction intermediate formed during the ferrirhodanide reaction catalyzed by ferritin. This ubiquitous protein is composed of 24 structurally equivalent subunits that form a “soccer ball”-like complex with a large inner cavity. Toxic iron(II) is converted as an iron(III)-oxide core mineral and safely stored within the inner cavity. The bridging diiron(III)-peroxo complex we observed eventually produce hydrogen peroxide and an initial iron-oxide. Recent advances in RFI instrumentation which allow trapping of transient species within 100 microsec. have begun to reveal reaction intermediates previously inaccessible and somewhat unsuspected.

Moënne-Loccoz

**Iron Proteins and O₂ Activation**

Iron containing enzymes react with molecular oxygen to form powerful oxidizing agents and carry out very difficult chemical reactions. We work with three enzymes that contain a non-heme diiron cluster at their active site: Ribonucleotide reductase protein R2, which oxidizes tyrosine 122 to its catalytically important neutral radical form; methane monooxygenase, whose hydroxylase component oxidizes hydrocarbons to alcohols; and a plant acyl desaturase, which oxidizes fatty acids to olefins. In the reduced form of these enzymes, the diferrous cluster reacts with oxygen to form an initial peroxo intermediate before further conversion to higher valent intermediates capable of carrying out the oxidative chemistry. We are interested in characterizing the pathway of these oxygen activation processes. Our approach is to elucidate the structure of trapped reaction intermediates using various molecular spectroscopic techniques and to compare these results with observations in synthetic and computational models.

Moënne-Loccoz

**Nitric Oxide Reaction with Diiron Proteins**

Many bacteria and archaea respire anaerobically via denitrification, using nitrate (NO3-) rather than O2 as an electron sink. This process consists in 4 successive reductions (NO3- - NO2-
NO N2O (N2), each catalyzed by a dedicated metalloenzyme. The reduction of two NO molecules into nitrous oxide (N2O) is catalyzed by a membrane-spanning protein that contains a dinuclear active site composed of a heme iron and a non-heme iron. NO reductase belongs to the superfamily of terminal oxidases and shares some basic structural features with the cytochrome c oxidase family of enzymes. Using different spectroscopic techniques and substrate analogues, we investigate the role of the metal centers within the active site. Synthetic models that mimic the putative active site metal clusters are also used. In addition, we also study structurally unrelated NO reductases found in non-denitrifying bacteria which play an important role in protection against toxic levels of NO. Again in these enzymes, iron is essential to catalysis.

E. coli: 

ResD-ResE Two-Component Signal Transduction System

Bacteria often encounter sudden environmental changes. Cells cope with such changes by mobilizing a battery of adaptive responses. The two-component signal transduction system senses and then processes information derived from environmental changes so that the cell can choose the appropriate adaptive response. Signal transmission involves phosphorylation of one protein (response regulator) by the other (sensor kinase). ResE is a histidine kinase and ResD is a response regulator of this large protein family. We have shown that ResD and ResE are indispensable for anaerobic respiration in Bacillus subtilis. A specific signal derived by oxygen limitation and nitric oxide is integrated into the ResD-ResE system to activate transcription of genes involved in nitrate respiration. The objectives of our studies are to determine how the bacterium utilizes the ResE sensor kinase to sense oxygen limitation and nitric oxide and how anaerobically induced genes are activated by ResD.

Long-Term Anaerobic Survival and Flavohemoglobin (Hmp)

Bacteria in natural habitats often encounter unfavorable conditions for growth. The gram-positive bacterium Bacillus subtilis forms dormant spores when it undergoes nutritional starvation under aerobic conditions. However, B. subtilis cells are unable to sporulate under low oxygen conditions, which they likely experience in soil, their natural habitat. Our study showed that B. subtilis undergoes a drastic change in cell morphology during prolonged anaerobic incubation and that flavohemoglobin (Hmp) is indispensable for long-term survival when the bacterium undergoes nitrate respiration. Our hypothesis is that the essential role of Hmp is to combat the effects of reactive nitrogen species, long-exposure to which causes accumulated cellular damage. Two-dimensional polyacrylamide gel analysis showed that the protein profile drastically changes after long-term anaerobic incubation, suggesting that B. subtilis undergoes dramatic physiological changes under these conditions. The overall goal of this research is to understand the physiological changes associated with long-term anaerobic incubation in order to elucidate the mechanism of bacterial cell survival/death.

Structure-function Studies of Hemoproteins

Heme cofactors are porphyrin macrocycles which bind iron very tightly at their core. Two additional coordination sites perpendicular to the porphyrin plane allow binding of two axial ligands. In many cytochromes both axial ligation sites are occupied by endogenous amino acid side chains from the protein matrix and the heme’s role is limited to electron transfer, with the iron cycling between its iron(II) and iron(III) oxidation state. In contrast, in hemoproteins such as cytochrome P450, peroxidase, and heme oxygenase, one axial ligation site is available to coordinate oxygen species and carry out redox chemistry. We investigate how the reactivity of the coordinated oxygen species can be fine-tuned by the combined influences of the heme iron proximal (axial endogenous) ligand, the microenvironment in the substrate binding pocket, and the interaction between the protein and the heme moiety which can affect its planarity and electronic configuration.

An aerobic biodegradation of Bacillus subtilis

A gram-positive soil bacterium, B. subtilis, is highly amenable to genetic analysis and has been used as a model system to study fundamental microbiological research. In addition, B. subtilis is medically and industrially important since it produces a variety of antibiotics and extracellular enzymes. Although the organism has been widely used, it has been mistakenly referred to as a strict aerobe until recently. Our studies, together with others, have shown that B. subtilis is able to grow under anaerobic conditions by utilizing nitrate or nitrite as an alternative electron acceptor. In the absence of terminal electron acceptors, it undergoes fermentative growth. Our research aims include elucidation of the regulatory mechanisms through which the cells adapt to oxygen limitation. Molecular genetic and biochemical approaches are applied.

Hemolysin Gene Regulation

Bacillus anthracis, the causative agent of anthrax, is generally accepted as a nonhemolytic pathogen, although hemolysin genes are present in the genome. Recent studies have shown that B. anthracis can produce hemolysin under certain conditions. Another nonhemolytic spore-former, Bacillus subtilis, also carries putative hemolysin genes. The activation of "latent" virulence genes could have a strong impact on various bacterial infections.

Distribution of Organic Compounds Between the Gas and Urban Aerosol Particulate Phases

The behavior of organic compounds in the atmosphere depends in large part on the extent to which they partition from the gas phase to aerosol particulate matter. Processes that are affected by this partitioning process include precipitation scavenging of gases and particles as well as dry deposition of gases and particles. Fundamental gas/solid sorption theory is being used to investigate important aspects of atmospheric gas/particle partitioning. The study involves the investigation of basic partitioning behavior of a wide range of representative atmospheric compounds (including alkanes and polycyclic aromatic hydrocarbons) on a variety of representative model particulate substrates, including elemental carbon, organic carbon, silica and clay.

Prioritization of Nationally Important Compounds for Future Monitoring

The chemical industry produces thousands of organic compounds that are in widespread use across the nation. It is critically important that organic compounds not presently monitored in the U.S. Geological Survey’s National Water-Quality Assessment Program be systematically evaluated so that future monitoring programs can consider the compounds that are of greatest concern because of the magnitude of their use/releases, environmental behaviors, and potential toxicities. The primary objective of this work is to develop a science-based strategy to anticipate those organic compounds that are likely to emerge as major national water-quality issues.

Fate and Effects of Fuel Oxygenates

The recent realization that oxygenated fuel additives such as MTBE are becoming widely distributed groundwater contaminants has created a sudden and pressing demand for data on the processes that control their environmental fate. Ongoing work in this area includes modeling of MTBE infiltration to the groundwater; laboratory studies of MTBE biodegradation, and field studies of several contaminated sites for MTBE and its possible breakdown products. For more information on this work, see www.cgr.ese.ogi.edu/mtbe/
Pankow, Tratnyek, Johnson

Mechanisms of Mammalian Chemical Communication and Vomeronasal Olfaction

Chemical communication plays a significant role in life strategies for many mammals. Our research focuses on chemical identification of pheromones functioning during reproductive events in the Asian elephant, Elephas maximus. A female-to-male preovulatory urinary sex pheromone, (Z)-7-dodecen-1-yl acetate, has been identified and demonstrated to be robust in
its synthetic form. This compound is also bioactive in many Lepidoptera, making it a good example of convergent evolution of structure and function. Biochemical studies have established the presence of the pheromone in the serum, and future studies will investigate its biosynthetic pathways. Considerable progress has been made on establishing the proteins functioning as pheromone transporters prior to signal transduction in the neuroreceptive cells of the vomeronasal organ. Radiolabeled analogs, competition experiments and molecular biological studies have established unusual roles for elephant albumin and olfactory binding protein. A second pheromonal system is actively being investigated. The facial temporal gland, breast and urine exude unusual chemical compounds during musth in Asian male elephants. These signals have a role in mate choice by female elephants, spatial distribution by male elephants and other reactions by conspecifics. Utilizing several state-of-the-art gas chromatographic/mass spectrometric techniques, including chiral column analyses, we have identified a male-emitted pheromone, frontalin, whose bioactivity is dependent on a critical precise ratio of two enantiomeric forms, the first such example among mammalian chemical signals.

L. Rasmussen

Global Distributions and Mass Balances of Halocarbons, Nitrous Oxide and Other Trace Gases

Gases such as CCl3F (F-11), C2F3Cl2 (F-12), CHClF2 (F-22), CF4 (F-14), C2Cl3F3 (F-113), CH3CCl3, CH3Cl and N2O are being added to the atmosphere by various industrial processes and the public’s use of high-technology products. Such chlorine-containing compounds are believed to threaten the Earth’s natural ozone layer high in the atmosphere (stratosphere). This research will systematically obtain a long-time series of concentration measurements by a flask sampling system. The results are then interpreted with global mass balance models and sophisticated statistical techniques to quantify the sources and lifetimes of these gases in the environment. Such data are now obtained from sites all over the world extending from the Arctic Circle to the South Pole.

R. Rasmussen

Studies of Past Atmospheres

Atmospheric gases such as N2O, CO2, CO, CH3Cl, carbonyl sulfide (OCS) and CH4 are primarily produced by natural processes, but over the past century human activities have been adding growing amounts to their natural abundance. This process can upset the cycles of these gases and lead to possibly adverse environmental effects such as the warming of the Earth’s surface (N2O, CO2, CH4). When both natural and anthropogenic processes contribute to the current atmospheric abundance of a trace gas, it is of interest to determine the amount which existed before human activities had any effect. Perhaps the only realistic method to determine the composition of the ancient atmosphere is to analyze the air in bubbles buried deep in polar ice. The depth of the ice indicates the age of the air in the bubbles. By going far enough back in time, the relationship between past atmospheric composition and climate might be found. The novel and simple method of studying the old atmosphere of the earth is beset by many problems that complicate the relationship between the gases in the bubbles and the composition of the old atmosphere. Theoretical and experimental research for resolving these problems as well as the measurement of trace gases are the major goals of this project.

R. Rasmussen

Ocean-Air Exchange of Gases

Some atmospheric gases are greatly influenced by the Earth’s oceans. For instance, a large amount of the atmospheric methyl chloride (CH3Cl) and methyl iodide (CH3I) are produced in the oceans, possibly by biogenic processes. It has also been shown recently that carbonyl sulfide (OCS) is produced in the oceans and subsequently emitted to the atmosphere. On the other hand, manmade gases such as CCl3F (F-11) can dissolve in the oceans and thus be removed from the atmosphere. This research project is devoted to determining the solubility of such gases in water and to modeling the flux of gases into or out of the oceans. The results obtained are essential ingredients in determining the sources and fates of atmospheric trace gases and in estimating the effects of human activities on the future warming of the Earth or depletion of the ozone layer.

R. Rasmussen

Studies of Atmospheric Methane

Considerable evidence has been accumulated showing that methane (CH4) is increasing in the atmosphere, most likely as an indirect result of growing human population. In the future, such an increase of CH4 can lead to a global warming by enhancing the Earth’s natural greenhouse effect and create more ozone and carbon monoxide in the atmosphere. However, it might also prevent some of the destruction of the stratospheric ozone layer by the manmade fluorocarbons 11 and 12. In this project, experimental and theoretical research is focused on statistical trend analyses for the global increase of CH4, its seasonal variation, sources and sinks, models of its effect on the CO, O3, and OH cycles and its role in the future of the environment.

R. Rasmussen

Development of Experimental Methods for Trace Gas Measurements

At least 50 atmospheric gases can be measured at the Trace Gas Laboratory. Still, new methods are needed to improve the accuracy and precision of measurements and to satisfy the stringent demands of ultra-clean background air sampling. New methods are also being developed for automated real-time analysis of many trace gases. Research programs include development of gas chromatographic and mass spectrometric methods for the analysis of trace gases. GC/MS systems in the laboratory are being used to routinely measure C2-C12 nonmethane hydrocarbons at tens of parts-per-trillion levels. Techniques for collecting and storing air and water samples also are being developed.

R. Rasmussen

Biogenic Sources of Atmospheric Gases

Living organisms produce and consume a variety of gases and may therefore form an integral part of the global cycle of a trace gas. Selected plants and animals, living in the sea or on land, are being studied to determine their role in the cycles of CH4, N2O, CH3Cl, CH3I, isoprene and other hydrocarbons.

R. Rasmussen

The Global Cycle of Carbon Monoxide (CO)

Based on over 15 years of global sampling and the application of modern trend analysis techniques, our data have shown that CO increased in the atmosphere until around 1987 and has since declined. These changes in CO have major implications for atmospheric chemistry and the role of biomass burning in causing global increases of trace gases. Present research includes modeling of the global budgets, seasonal cycles and potential environmental effects.

R. Rasmussen

Methane Emissions from Rice Fields

Methane concentrations have nearly tripled compared to the natural atmosphere of 300 years ago (based on ice core analyses). The increase of rice agriculture to sustain an increasing population may be a major contributor to the increase of methane during the last century. This research program is designed to determine the role of rice agriculture in the global methane cycle. Field experiments are being conducted in China, Indonesia and the United States. Laboratory experiments and theoretical research are being done at the Global Change Research Center (Portland State University) in a comprehensive research program. This work includes modeling the production, oxidation and transport of methane in the rice paddy ecosystem and measuring the controlling parameters.

R. Rasmussen

Translational Control in Fungal Amino Acid Biosynthesis

A greater understanding of how many human health issues relies on increased knowledge of how cells express genetic information. Gene expression can be controlled by regulating the synthesis and stability of functional RNA and protein. The goal of our research is to obtain a greater understanding of how these mechanisms work using the Neurospora crassa arg-2 and Saccharomyces cerevisiae CPA1 genes as models. These homologous genes
encode the first enzyme in arginine biosynthesis and they are negatively regulated at both transcriptional and translational levels in response to the availability of arginine. An evolutionarily conserved upstream open reading frame (uORF) present in the 5' leader regions of these transcripts is responsible for translational control. Synthesis of the uORF-encoded peptide causes ribosomes to stall when the level of arginine is high, blocking access of ribosomes to the translation initiation site for the polypeptide encoding the arginine biosynthetic enzyme. Our current work is focused on developing a molecular understanding of how synthesis of this uORF-encoded peptide causes ribosomes to stall, since this will provide important insights into the fundamental cellular process of protein synthesis.

Sachs

Genome Organization in Fungi

The Neurospora crassa genome and the genomes of other filamentous fungi are being sequenced, enabling comparisons of how these fungi differ from each other and from the yeasts. We are focusing on the characterization of the sub-telomeric regions of N. crassa, since genes in sub-telomeric regions are implicated in protein synthesis.

Sachs

Characterization of Metabolic Pathways and Interaction Networks among Root-colonizing Crenarchaeotes and Members of a Mixed-species Assemblage (Genomics)

Natural organic matter largely consists of humic substances, a class of biogenic and refractory organic compounds that are prevalent in all terrestrial and aquatic environments. Because these substances are major reservoirs of organic carbon, the global carbon cycle is affected in critical ways by microorganisms that mediate their turnover. Mesophilic crenarchaeotes, unforeseen and little-understood members of the domain Archaea, may be a group of such organisms. We are addressing questions about the ecological functions of these archaebacteria-colonizing crenarchaeotes by working with both enrichment cultures and environmental samples. Genomic sequence analysis is in progress and will help determine whether a genetic basis exists to support hypotheses, developed from these studies, that predict carbon and energy utilization pathways in the rhizosphere crenarchaeotes.

Simon

Microbial Gene Biosensors

In conjunction with major initiatives in coastal margin research, we are developing remote sensing technology based on nucleic acid biosensors. We are working with label-free microarray platforms to detect changes in microbial population numbers and gene expression in near real-time. The microarrays will be used in studies to determine the composition and dynamics of microbial communities within high gradient regions of the Columbia River estuary and near coastal ocean.

Simon

Bacterial Manganese(II) Oxidation

Manganese(II)-oxidizing bacteria accelerate the rate of Mn biomineralization several orders of magnitude faster than abiotic processes. This biogeochemical process has gained much attention in recent years as Mn(III,IV) oxide minerals are abundant in terrestrial and marine environments. These Mn oxide minerals impact a variety of biological processes, including photosynthesis, carbon fixation, and scavenging of reactive oxygen species (ROS). Next to oxygen, Mn oxides are some of the strongest naturally occurring oxidizing agents in the environment. They participate in numerous redox and sorption reactions, thereby controlling the distributions of many other trace and contaminant elements as well as serving as a terminal electron acceptor for bacterial respiration. Dr. Tebo's research spans the disciplines of microbiology, molecular biology, genomics, bioinorganic chemistry, mineralogy, and environmental aqueous geochemistry to investigate the molecular mechanisms of manganese oxidation by bacteria and the mechanisms by which the resulting oxide solids impact the chemistry of heavy metals and organic contaminants in soils and natural waters. We have demonstrated that Mn(II) oxidation in diverse bacteria is mediated by a novel multicopper oxidase-like protein. Recent studies using synchrotron-based X-ray absorption spectroscopy have shown that biogenic Mn oxides are nanoparticulate, cryptocrystalline materials and are representative of the most highly reactive and important Mn oxide phases in the environment. Research projects in the lab address questions such as why bacteria oxidize Mn(II), can Mn(II)-oxidizing bacteria be used for heavy metal removal and bioremediation, what are the properties of the biogenic Mn oxide minerals, how do bacteria influence the biogeochemical cycling of Mn in the environment and how are they influenced by environmental factors? Specific environments studied include the oxic/anoxic transition zones that occur in anoxic water bodies (e.g., the Black Sea), at hydrothermal vents, and on rock and mineral surfaces.

Tebo

Biotransformations of Chromium and Uranium

Hexavalent chromium (Cr(VI)) and hexavalent uranium (U(VI)) are the toxic and highly soluble forms of these elements and are of great concern as pollutants in the environment. When reduced to Cr(III) or U(IV) these elements are much less soluble and hence less toxic. Thus, hexavalent Cr and U reduction, particularly by bacteria, is being explored as a (bio)remediation strategy for these elements. However, for this to be effective Cr and U must be stable in their reduced forms. The Tebo lab is interested in the mechanisms of Cr and U reduction by bacteria, the properties and stability of the reduced forms of these elements, and the mechanisms by which they may be reoxidized. We have isolated a number of novel bacteria capable of growing with Cr(VI) and U(VI) as electron acceptors and are investigating their response to Cr(VI) and U(VI) exposure. The full genome sequence of one of our organisms, Desulfotomaculum reducens MI-1, will be used to characterize the metabolic capabilities of this bacterium. Both Cr(III) and U(IV) (hydr)oxides may be oxidized by Mn oxides, suggesting that Mn(II)-oxidizing bacteria play an important role in the stability of these phases. We have shown that Mn(II)-oxidizing bacteria accelerate the oxidation of Cr(III) over that observed by synthetic or biogenic Mn oxides alone and we seek to understand the mechanism of catalysis and the possible role of Mn(II)-oxidizing bacteria in U(VI) oxidation.

Tebo

Microbial Weathering of Ocean Basalts

To date, it has been challenging to determine the extent to which microbes are involved in low temperature (<100°C) basalt weathering reactions, although textural, chemical and biological evidence suggests that bacterial activity may be widespread. Research in the Tebo lab focuses on the role of iron- and manganese-oxidizing bacteria, siderophore-producing bacteria, and other bacteria in basalt weathering. Our research is designed to identify which microorganisms are involved in the initial stages of basalt weathering, their identity and modes of metabolic activity, and how transient these microbial communities may be. The project is a blend of field and laboratory work combining field exposure experiments with bacterial cultivation and molecular microbiological methods. The field work is being conducted on Loihi seamount and Puna Ridge, the submarine extension of the Kilauea Volcano (Hawaii), and on Vaihau‘u, a seamount hotspot located near American Samoa. We sample basalts, vent fluids and ambient seawater, as well as deploy and retrieve basalt and monomineralic charges, using research submersibles. Molecular methods are used to identify the major colonizers of the basalts. Physiological experiments in the lab focus on measuring the rates and mechanisms of basalt alteration.

Tebo

Remediation of Halocarbon-Contaminated Groundwater

There is enormous demand for improved ways to clean up aquifers that have been contaminated with halogenated hydrocarbon solvents like carbon tetrachloride and TCE. Recent field-scale tests have shown that technologies based on dechlorination with granular iron may have substantial value. The goal of our research in this area is to provide a sound scientific basis for designing and operating such technologies by determining the mechanisms of dechlorination by iron and the geochemical and microbiological
Remediation of Explosives-Contaminated Groundwater

There are numerous facilities where military operations have resulted in contamination of groundwater with explosives such as TNT and RDX. Both TNT and RDX react rapidly with zero-valent iron, suggesting that permeable reactive barriers of zero-valent iron might be useful in remediation of these sites. However, the products of these reactions with zero-valent iron may not present a satisfactory remediation endpoint. Therefore, we are investigating the genetics and mechanisms of this reaction in the experiments performed in the laboratory and in the field. See [www.cgr.ese.ogi.edu/iron](http://www.cgr.ese.ogi.edu/iron).

Reduction Reactions of Organic Pollutants in Anaerobic Environments

Some organic pollutants undergo rapid reduction in anaerobic sediments, soils and groundwaters. Despite the potential importance of this process, little is known about the natural reducing agents that are responsible for these reactions. In this project, assays are being developed to identify and quantify environmental reducing agents in situ. These assays will be used in kinetic studies of important pollutant reduction reactions.

Oxidation Reactions of Organic Pollutants

Some organic pollutants undergo rapid oxidation in natural waters, when catalyzed by sunlight, and in technological systems, when chemical oxidants are added to effect remediation. These reactions are usually mediated by "activated oxygen species" such as hydroxyl radical. We are studying the kinetics, mechanisms and products of these reactions with a wide variety of contaminants. The aim of this work is to help assess the suitability of various advanced oxidation technologies (AOTs) for remediation of groundwater, as well as to better understand the fate of contaminants in natural waters that are exposed to sunlight.

Correlation Analysis of Contaminant Reactivity

Quantitative Structure-Activity Relationships (QSARs) are of enormous importance in environmental chemistry and toxicology because of their predictive power, but they also reveal a great deal about reaction mechanisms and the nature of substituent effects. We are involved in the development of QSARs for a wide range of redox reactions involving organic contaminants. This work involves the use of computational chemistry methods as well as advanced statistical techniques in exploratory data analysis.

Modeling Biological Systems

Living systems integrate processes at multiple scales of organization and interact with the abiotic environment. In analyzing such systems, models (e.g., biological, physical and mathematical / computational) are developed to understand observed phenomena and to predict responses that are unobservable (e.g., a forecast/prediction of a future point in time, or a response to a new set of conditions). Dr. Watanabe's research focuses on the development of mathematical/computational models to understand the biological fate of chemical xenobiotics, and the risks of exposure to such chemicals for humans and ecosystems. Ongoing research includes: Systems Biology Modeling of Fathead Minnow Response to Endocrine Disruptors. To reduce dependence on animal testing in quantitative risk assessment, the U.S. Environmental Protection Agency has undertaken research in the area of Computational Toxicology. The goal of this project is to determine molecular and protein biomarkers that are diagnostic for endocrine disruption in fathead minnows (FHM, *Pimephales promelas*). Our hypotheses are (i) molecular biomarkers are diagnostic of the reproductive effects of environmental estrogens, and (ii) these biomarkers provide a broader understanding of the FHM reproductive system. We are developing a physiologically based computational model to simulate the FHM hypothalamic-gonadal-pituitary axis and its responses to endocrine disrupting chemicals. The model will be used to predict reproductive effects in fathead minnows exposed to environmental estrogens based upon molecular and protein biomarkers. Watanabe and multi-institutional collaborators.

Radical Copper Oxidases

Radical copper oxidases are a new class of redox metalloenzymes (including the fungal enzymes galactose oxidase and glyoxal oxidase) containing a metal ion and exogenous ligands that are paramagnetic (e.g., biological, physical and mathematical / computational) are developed to understand characteristic metal-ligand interaction energies from toxic oxygen metabolites. The key question is: How do interactions between the protein, metal ion and exogenous ligands tune the redox potential and chemistry of these complexes? We are combining the powerful tools of molecular biology with advanced spectroscopic and computational approaches to explore the structure and dynamics of Mn active sites. For MnSOD, we find an unexpected temperature dependence for the structures of anion complexes, which change coordination as the temperature is raised. This thermal transition implies that the stability of the active site structure is determined by dynamical features of the complex and that dynamical excitation may play an important role in controlling the energetics of ligand binding and redox. A wide range of projects relating to the chemistry and biology of Mn are in progress.

Electronic Spectroscopy of Biological Metal Complexes

Electronic spectroscopy extends structural studies of biomolecules beyond the atomic resolution of X-ray crystallography to a level of structural detail that directly relates to chemistry. The techniques used in these studies span five decades of the electromagnetic spectrum, from microwaves to the ultraviolet and beyond. At the lowest energy, electron paramagnetic resonance (EPR) spectroscopy gives information on the electronic ground state, defining the molecular orbital that contains the unpaired electron in a paramagnetic complex. At higher energy, UV-visible absorption spectroscopy excites orbital transitions between electronic states, giving information on characteristic metal-ligand interaction energies that can be understood in terms of a ligand field or molecular orbital analysis. Polarization spectroscopy (linear dichroism, circular dichroism and magnetic circular dichroism) can give more detailed information on ground and excited state electronic wave functions using geometric features of light to probe the active site. These experimental approaches can be complemented by spectroscopic modeling and computational biology methods to provide a detailed description of a metalloprotein complex and its interactions.

Regulation of Long Chain Fatty Acid Transport and Oxidation in Mammalian Heart and Liver

The rate-limiting step in β-oxidation is the conversion of long-chain acyl-CoA to acylcarnitine, a reaction catalyzed by the outer...
mitochondrial membrane enzyme carnitine palmitoyltransferase I (CPTI) and inhibited by malonyl-CoA. The acylcarnitine is then translocated across the inner mitochondrial membrane by the carnitine/acylcarnitine translocase and converted back to acyl-CoA by CPTII. This reaction in intact mitochondria is inhibited by malonyl-CoA, the first intermediate in fatty acid synthesis, suggesting coordinated regulation of fatty acid oxidation and synthesis.

Structure-Function Studies with the Mitochondrial CPT System. We have separately expressed the genes for human heart muscle M-CPTI and rat liver LCPTI and CPTII in Pichia pastoris, a yeast with no endogenous CPT activity. We have constructed a series of deletion and substitution mutations to the N-terminus of L-CPTI, and demonstrated that Glu-3 and His-5 are necessary for malonyl-CoA inhibition and binding of L-CPTI, but not catalytic activity. Similar mutagenesis studies with the human heart M-CPTI revealed that Glu-3, Val-19, Leu-23, and Ser-24 are necessary for malonyl-CoA inhibition and binding, in accordance with the differences in malonyl-CoA sensitivity observed with the two isoforms of the enzyme. We have also expressed pig L-CPTI in yeast and shown that Pig L-CPTI is much more sensitive to malonyl-CoA inhibition than rat L-CPTI, a kinetic characteristic similar to that of human or rat M-CPTI enzymes. Hence, pig LCPTI behaves like a natural chimera of the L- and MCPTI isotypes, which makes it a useful model to study the structure-function relationships of CPTI.

Our site-directed mutagenesis studies of conserved basic and aromatic residues in the C-terminal region of L-CPTI suggest that conserved arginine and tryptophan residues contribute to the stabilization of the enzyme substrate complex by charge neutralization and hydrophobic interactions. The predicted secondary structure of the 100-amino acid region of L-CPTI, spanning arginines 388 and tryptophans 452, consists of four α-helices similar to that of the acyl-CoA binding protein with a known 3D structure, and may constitute the putative palmitoyl-CoA-binding site in L-CPTI. Furthermore, our mutagenesis studies of the conserved acidic and basic residues in the C-terminal region of L-CPTI showed that residues E590, E603, R601 and R606 are important for both substrate and inhibitor binding. We predict that the region of L-CPTI spanning the conserved residues R601 and R606 may be the putative low affinity acyl-CoA/malonyl-CoA binding site. With MCPTI, deletion of L764 or substitution with arginine was found to inactivate the enzyme, suggesting that L764 may be important for native folding and optimal activity of M-CPTI. For CPTII, our site-directed mutagenesis studies demonstrated that Glu-487 is essential for catalysis. We will purify milligram quantities of the His-tagged yeast-expressed M-CPTI, L-CPTI, CPTII and engineered fragments for structural studies.

Transgenic and Knockout Mice Models for CPTI

We will determine the molecular basis for tissue specific and hormonal/dietary regulation of human heart M-CPTI gene expression in a transgenic mouse model in vivo carrying a 1.1 kb of the 5′ flanking region of the human heart M-CPTI gene promoter fused to a CAT reporter gene. We will employ homologous recombination in embryonic stem cells to produce mice lacking the M-CPTI gene (knockout mice) using our cloned mouse genomic M-CPTI DNA. We will also generate a transgenic mouse model overexpressing human heart M-CPTI in vivo carrying the murine α- myosin heavy-chain gene promoter fused to human heart muscle M-CPTI cDNA (reporter gene). Transgenic and knockout mice models would provide valuable information about the role of M-CPTI in fatty acid metabolism in the normal and diseased heart. Because the enzyme is essential for heart function, loss of M-CPTI may be incompatible with life.

Prokaryotic Signal Transduction/Gene Regulation

Bacteria can respond in variety of ways to a growth-restricting environment. Prolonged exposure to a nutritionally poor environment results in the induction of antibiotic biosynthesis, functions required for cell motility and processes of cellular differentiation that give rise to highly resistant cell types. How cells respond to nutritional stress is profoundly influenced by cell density. Extracellular signal molecules accumulate in the local environment of densely populated cell cultures and trigger antibiotic production and developmental processes such as sporulation and genetic competence. The objective of our research is to understand, in molecular terms, the regulatory networks that cells utilize to choose the most appropriate response to harsh conditions. In the spore-forming bacterium, Bacillus subtilis, establishment of genetic competence is coregulated with peptide antibiotic biosynthesis by a complex network of signal transduction pathways that utilize protein components common to all prokaryotic and most eukaryotic organisms.

Factors Controlling the Microbial Stress Response

A microorganism’s response to a harsh environment is characterized by genome-wide changes in gene expression orchestrated by factors that exert a global influence over transcription. These factors are important virulence determinants in pathogenic bacteria because they control the cell’s response to the bacteriocidal conditions, such as oxidative stress, imposed by the host’s immune systems. Among the factors that we study in my lab is a protein that we discovered called Spx from the spore-forming bacterium Bacillus subtilis. Spx is controlled at multiple levels of gene expression: transcription, protein stability, and at the level of Spx activity, which is under redox control. The goal of my lab is to understand how Spx exerts both negative and positive transcriptional control, and how Spx concentration in the cell is regulated. We also seek to determine how Spx function is integrated into the cell’s regulatory network that senses and responds to encounters with toxic oxidants. Our work involves classical bacterial genetics, studies of bacterial metabolism, and in vitro reconstruction of the molecular events that characterize gene transcriptional regulation.
Second, we envision that multipurpose observation and prediction systems will become central to the management of coasts and estuaries worldwide. The Columbia River estuary is a challenging natural laboratory to test concepts and tools, and CORIE is a pilot system developed to anchor our environmental information technology and our coastal observation and prediction research.

OBSERVATION INFRASTRUCTURE

The CORIE observation network is maintained from the CCALMR field station located on the MERTS Campus of Clatsop Community College (CCC) in Astoria, OR. Routine maintenance of the observation network is performed from a CCALMR operated vessel, an 18’ inflatable. CCC’s 30’ training vessel MV Forerunner and vessels of opportunity are used on a regular basis for operations requiring larger vessels. OHSU maintains an AAUS approved scientific diving program that provides support for field data gathering and instrument maintenance tasks.

The CORIE pool of instrumentation includes: 9 SonTek or RDI acoustic Doppler profilers; 42 Falmouth Campus of Clatsop Community College (CCC) in Astoria, OR. Routine maintenance of the observation network is performed from a CCALMR operated vessel, an 18’ inflatable. CCC’s 30’ training vessel MV Forerunner and vessels of opportunity are used on a regular basis for operations requiring larger vessels. OHSU maintains an AAUS approved scientific diving program that provides support for field data gathering and instrument maintenance tasks.

The CORIE pool of instrumentation includes: 9 SonTek or RDI acoustic Doppler profilers; 42 Falmouth Campus of Clatsop Community College (CCC) in Astoria, OR. Routine maintenance of the observation network is performed from a CCALMR operated vessel, an 18’ inflatable. CCC’s 30’ training vessel MV Forerunner and vessels of opportunity are used on a regular basis for operations requiring larger vessels. OHSU maintains an AAUS approved scientific diving program that provides support for field data gathering and instrument maintenance tasks.

The CORIE pool of instrumentation includes: 9 SonTek or RDI acoustic Doppler profilers; 42 Falmouth Campus of Clatsop Community College (CCC) in Astoria, OR. Routine maintenance of the observation network is performed from a CCALMR operated vessel, an 18’ inflatable. CCC’s 30’ training vessel MV Forerunner and vessels of opportunity are used on a regular basis for operations requiring larger vessels. OHSU maintains an AAUS approved scientific diving program that provides support for field data gathering and instrument maintenance tasks.

The CORIE pool of instrumentation includes: 9 SonTek or RDI acoustic Doppler profilers; 42 Falmouth Campus of Clatsop Community College (CCC) in Astoria, OR. Routine maintenance of the observation network is performed from a CCALMR operated vessel, an 18’ inflatable. CCC’s 30’ training vessel MV Forerunner and vessels of opportunity are used on a regular basis for operations requiring larger vessels. OHSU maintains an AAUS approved scientific diving program that provides support for field data gathering and instrument maintenance tasks.
CENTER FACULTY
Richard Johnson, Professor and Director
James F. Pankow, Professor
Paul Tratnyek, Professor

LEAP EQUIPMENT
- Five tanks: one 10m x 10m x 3m; two 10m x 10m x 5m; one 10m x 2.5m x 0.5m; and one 8m x 2.5m x 0.5m
- In-situ instrumentation, including automated temperature, pressure and water-level monitoring; multilevel samplers; down-hole video camera; and automated vapor and product-sensing equipment
- Remediation equipment, including soil vapor extraction and air sparging capabilities
- Automated on-site analytical equipment, including capillary GC-MS

RESEARCH FACILITIES
The Department of Environmental and Biomolecular Systems is well equipped to carry on a vigorous research program. Instruments and equipment available in the department include:
- Gas chromatograph/mass spectrometer with computer data system
- High-resolution mass spectrometer
- UV/Visible spectrometer
- Capillary column gas chromatographs with flame ionization detectors
- Fourier transform-infrared spectrometers
- Fourier transform-Raman spectrometer with CW Nd:YAG laser
- X-band electron paramagnetic resonance spectrometer
- Ultraviolet/Visible/near-infrared spectrophotometers
- Scanning fluorescence spectrophotometers
- Magnetic circular dichroism (MCD) spectrometer
- Diode array UV/Visible spectrophotometer
- Laser Raman spectrophotometer
- Raman spectrograph with CCD detector
- Ar, Kr, HeCd, HeNe and dye lasers
- High-vacuum lines
- Phosphor imager
- Controlled atmosphere reaction chamber
- Super speed centrifuges
- Ultracentrifuges
- HPLCs
- FPLCs
- Fraction collectors
- Liquid scintillation systems
- Gel electrophoresis systems
- Laminar flow hoods for sterile culture
- Growth chambers
- Constant temperature rooms
- Light and electron microscopes
- Ultrafiltration systems
- Autoclaves
- Photographic facilities
- Probe-type sonicators and extruder
- Laser-Scanning Confocal Microscope
- Anaerobic Chambers
See additional research equipment listings in the Research Centers section.
ANTÔNIO M. BAPTISTA
Professor and Department Head Director, Center for Coastal and Land-Margin Research
Ph.D., Civil Engineering Massachusetts Institute of Technology, 1987
baptista@ebs.ogi.edu

RESEARCH INTERESTS
Integrated understanding and prediction of hydrodynamic and environmental processes in estuaries and coasts.
Development of associated concepts and technologies: coastal observatories, environmental information technology, numerical methods and modeling systems, error and uncertainty analysis, and physically based ecological indicators.

REPRESENTATIVE PUBLICATIONS

NINIAN J. BLACKBURN
Professor
Ph.D., Inorganic Chemistry University of Dundee, Scotland, U.K., 1975
ninian@ebs.ogi.edu

RESEARCH INTERESTS
Structure and function of oxidase and oxygenase metalloenzymes; spectroscopy of metal sites in proteins with emphasis on EPR, EXAFS, absorption edge and FT-IR spectroscopies; coordination chemistry and biochemistry of copper. Biochemistry of metal trafficking in cells.

REPRESENTATIVE PUBLICATIONS

MARGO G. HAYGOOD
Professor
Ph.D., Marine Biology Scripps Institution of Oceanography University of California, San Diego, 1984
haygoodm@ebs.ogi.edu

RESEARCH INTERESTS
Environmental microbiology, bacterial physiology, bacterial evolution, marine biotechnology. Role of microbial symbionts in the production of bioactive compounds. Iron acquisition and regulation in marine bacteria.

REPRESENTATIVE PUBLICATIONS

RICHARD L. JOHNSON
Professor
Director, Center for Groundwater Research
Ph.D., Environmental Science Oregon Graduate Center, 1985
rjohnson@ebs.ogi.edu

RESEARCH INTERESTS
Physical and chemical behavior of organic contaminants in the air, soil and water; environmental analytical organic chemistry; transport and fate of contaminants at the watershed scale; modeling of contaminant transport.

REPRESENTATIVE PUBLICATIONS
PIERRE MOËNNE-LOCCOZ
Assistant Professor
Ph.D., Biophysics
University of Pierre & Marie Curie, 1989
plococo@ebs.ogi.edu

RESEARCH INTERESTS

REPRESENTATIVE PUBLICATIONS


MICHIKO M. NAKANO
Research Associate Professor
Ph.D., Cell Biology
University of Tokyo, 1976
mnakano@ebs.ogi.edu

RESEARCH INTERESTS
Anaerobiosis of Bacillus subtilis; oxygen-controlled gene regulation; nitric oxide signaling; two-component signal transduction system; transcriptional activation; long-term anaerobic survival; regulation of hemolysin genes in B. subtilis and B. anthracis.

REPRESENTATIVE PUBLICATIONS


JAMES P. PANKOW
Professor
Ph.D., Environmental Engineering Science
California Institute of Technology, 1978
pankow@ebs.ogi.edu

RESEARCH INTERESTS
Physical and analytical chemistry of organic and inorganic species in natural waters, the atmosphere, and smoke aerosols; the formation and chemistry of atmospheric aerosols; the chemistry of the delivery of nicotine and carcinogens by tobacco smoke.

REPRESENTATIVE PUBLICATIONS


L. E. L. (BETS) RASMUSSEN
Research Professor
Ph.D., Neurochemistry
Washington University (St. Louis), 1964
bets@ebs.ogi.edu

RESEARCH INTERESTS
Mammalian chemocommunication: the transport, olfactory and vomeronasal organ reception of the two identified pheromones of the Asian elephant: (Z)-7-dodecenyl acetate, the female-to-male sex pheromone; and frontal, the dominance pheromone. Both the origin and biochemical synthetic pathways of these two robust pheromones are being investigated.

REPRESENTATIVE PUBLICATIONS


REINHOLD A. RASMUSSEN  
Professor  
Ph.D., Botany/Plant Physiology  
Washington University, (St. Louis), 1964  
res@ebs.ogi.edu

RESEARCH INTERESTS  
Atmospheric chemistry of trace gases; biogenic and anthropogenic emissions of trace gases and their roles in stratospheric ozone destruction and tropospheric ozone formation; measurements of trace gases at parts per trillion to parts per quadrillion levels; sources and sinks of isoprene and other hydrocarbons.

REPRESENTATIVE PUBLICATIONS  


MATTHEW S. SACHS  
Associate Professor  
Ph.D., Biology  
Massachusetts Institute of Technology, 1986  
msachs@ebs.ogi.edu

RESEARCH INTERESTS  
Mechanisms of translational and transcriptional control that regulate the expression of the Neurospora crassa arg-2 and Saccharomyces cerevisiae CPA1 genes; fungal genomes.

REPRESENTATIVE PUBLICATIONS  


HOLLY SIMON  
Assistant Professor  
Ph.D., Bacteriology  
University of Wisconsin-Madison, 1990  
simonh@ebs.ogi.edu

RESEARCH INTERESTS  
Microbial interactions, ecology and genomics; ecophysiology of mesophilic crenarchaeota.

REPRESENTATIVE PUBLICATIONS  


BRADLEY M. TEBO  
Professor  
Ph.D., Marine Biology, 1983  
Scripps Institution of Oceanography  
University of California, San Diego  
tebo@ebs.ogi.edu

RESEARCH INTERESTS  
Geomicrobiology-physiology, biochemistry, and molecular biology of bacteria that catalyze metal transformations; molecular mechanisms of microbial metal binding, electron transfer (redox reactions), and mineral formation; the biogeochemical cycling of metals in the environment, marine biotechnology, bioremediation.

REPRESENTATIVE PUBLICATIONS  


REPRESENTATIVE PUBLICATIONS


RESEARCH INTERESTS
The chemistry of contaminant transformation in natural, biological, and engineered systems. Currently this includes the oxidation and reduction of groundwater contaminants especially those involving iron, biogeochemical processes involving natural organic matter, reactive transport of nanoparticulate iron oxides in environmental and biomedical applications, and quantitative structure-activity relationships for predicting properties of organic contaminants.

REPRESENTATIVE PUBLICATIONS


RESEARCH INTERESTS
Electronic structures and dynamics of metalloenzyme active sites; spectroscopic and computational approaches to biomolecular structure; metalloenzyme mechanisms; enzyme engineering; biology of metal ions.

REPRESENTATIVE PUBLICATIONS

RESEARCH INTERESTS
Structure-function studies with the mitochondrial carnitine palmitoyltransferases I and II (CPTI and CPTII); regulation of CPTI gene expression, fatty acid transport, and oxidation in mammalian cells; investigations into the role of CPTI in diabetes, obesity, heart disease, and the molecular basis of human CPT deficiency diseases using animal models; regulation of cell metabolism and signaling by longchain acyl-CoA esters; mitochondrial ion transport and bioenergetics.

REPRESENTATIVE PUBLICATIONS


PETER ZUBER
Professor
Ph.D., Microbiology
University of Virginia, 1982
pzuber@ebs.ogi.edu

RESEARCH INTERESTS

REPRESENTATIVE PUBLICATIONS


STAFF SCIENTISTS

**WILLIAM ASHER**  
Ph.D., Environmental Science and Engineering  
Oregon Graduate Center

**WENTAI LUO**  
Ph.D., Environmental Science and Engineering  
Oregon Graduate Institute of Science & Technology

**JAMES NURMI**  
Ph.D., Environmental Science and Engineering  
Oregon Graduate Institute of Science & Technology

**JAMES J. HUNTZICKER**  
Ph.D., Molecular Microbiology and Immunology  
Oregon Health & Science University

**BERNARD A. FOX**  
Earle A. Chiles Research Institute  
Providance Medical Center

**STEPHEN B. HALL**  
Pulmonary and Critical Care Medicine  
Oregon Health & Science University

**JAMES M. CREGG**  
Keck Graduate Institute of Applied Life Sciences

**JORGE CROSA**  
Dept. of Molecular Microbiology and Immunology  
Oregon Health & Science University

**RESEARCH STAFF**

**CRAIG R. ANDERSON**  
Ph.D., Microbiology  
Goteborg University

**MERY K. ATKINSON**  
Ph.D., Chemistry  
Middle East Technical University

**ANDREW T. BAUMAN**  
Ph.D., Molecular Toxicology  
Oregon State University

**SUSSANNA BRAUER**  
Ph.D., Microbiology  
Cornell University

**JOEL BURCHFIEL**  
B.S. Chemistry  
Oregon State University

**CAI CHEN**  
Ph.D., Environmental Science and Engineering  
OGI School of Science & Engineering at OHSU

**MARY MAYFIELD-GAMBILL**  
B.S., Microbiology  
Oregon State University

**RACHEL A. MOHAN**  
M.S., Management in Science and Technology  
Oregon Graduate Institute of Science & Engineering

**JULIA NORMAN**  
M.S., Environmental Science and Engineering  
OGI School of Science & Engineering at OHSU

**CHARLIE HENSON**  
Ph.D., Environmental Science and Engineering  
OGI School of Science & Engineering

**RESEARCH STAFF**

**BRIAN CLEMENT**  
Ph.D., Marine Biology  
 Scripps Institution of Oceanography  
University of California, San Diego

**GARNET ERDemos**  
Ph.D., Environmental Science and Engineering  
OGI School of Science & Engineering at OHSU

**JON GRAYES**  
M.S., Oceanography and Marine Resource Management  
Oregon State University

**LYDIE HERFORT**  
Ph.D., Biology  
Queen Mary University, London

**HEATHER M. HOOD**  
Ph.D., Behavioral Neuroscience  
Oregon Health & Science University

**JULINE ISABELLE**  
M.S., Chemistry  
San Francisco State University

**CHARLISSA PETTESSON**  
M.S., Biology  
Portland State University

**DIDO Y. REYES**  
Ph.D., Agricultural Chemistry  
Tokyo University of Agriculture

**CHARLES SEATON**  
M.S., Environmental Science and Engineering  
Oregon Graduate Institute of Science & Engineering

**CAROLYN SIEY**  
B.A. Geography  
San Diego State University

**ETAN VAN MARE**  
Software Engineering  
Kennedy Western University

**RACHEL H. WADDEMER**  
M.S., Environmental Science and Engineering  
OGI School of Science & Engineering at OHSU

**ROBERT M. WATKINS**  
B.S., Chemical Engineering  
Washington State University

**MICHAEL ZULLA**  
Ph.D., Meteorology  
University of Utah
THE DEPARTMENT OF MANAGEMENT IN SCIENCE AND TECHNOLOGY (MST) focuses on educating leaders and managers in a technology-intensive world. All MST courses have a strong technology focus, meeting the educational needs of students working in high-technology industries and/or technology-intensive professions including health care. Recognizing that the ability to innovate is a company’s only sustainable source of competitive advantage, the MST curriculum places a strong emphasis on driving, managing and delivering innovation solutions. Our curriculum also emphasizes leadership and the communication and teamwork skills needed to work effectively with people.

WHAT SETS MANAGEMENT IN SCIENCE AND TECHNOLOGY APART?
The M.S. in Management in Science and Technology is:

Technology-focused. Our graduate management program is a non-thesis degree program designed for working professionals in technology-creating industries (e.g. semiconductor and software) and technology-leveraging professions (e.g. information systems, materials planning/logistics and health care).

Relevant. Management in Science and Technology courses are taught by faculty with outstanding professional and academic credentials. Faculty have developed their expertise through years of professional work in the private sector as well as in distinguished academic careers. Each class is designed to deliver cutting-edge knowledge about best practices. Managers and executives from the region’s high-technology companies visit classes to share their experience with the students. Students and managers alike tell us that the “M.S. in Management classes offer knowledge you can apply Monday morning.”

Flexible. We designed the program for working professionals, making it possible for students to attend intensive weekend or weeknight classes and continue to fulfill their commitments at work and home. Students may begin taking classes in any quarter, and may take individual courses for professional development prior to enrolling in the degree program. In addition, the online delivery of our degree program through eCollege makes it a convenient choice, accessible to students anywhere in the world.

Collaborative. MST courses equip students with the functional expertise and the people skills to manage cross-boundary partnerships effectively. The curriculum and faculty emphasize the development of leadership and communications skills that are critical to collaboration between people from different functions, companies, and countries. Team projects, group exercises and oral presentations are emphasized throughout the curriculum. In addition, small class sizes create an enriched learning experience by promoting interaction and discussions between faculty and students.

Entrepreneurial. The MST program emphasizes innovation and entrepreneurship through the integrative Capstone experience, culminating in the Jim Hurd New Venture Competition. Student-formed management teams develop and present business plans to a panel of venture capitalists that evaluates their viability and investment potential.

INDIVIDUAL COURSES FOR CAREER DEVELOPMENT
Each Management in Science and Technology course has been designed as a valuable professional development experience for working professionals. For example, Project Management (MST 512), Becoming an Effective Manager (MST 520) and Leadership and Communication Skills (MST 541) may be taken as stand-alone courses. We encourage non-matriculated students to join our courses for their own career development in specific areas.
ONLINE COURSES AND OFF-CAMPUS CLASSROOMS

The MST Department delivers challenging and engaging versions of its courses online. U.S. News & World Report chose MST-Online as one of the “Best of the Online Grad Programs” in 2001. This is an excellent option for students facing time pressures or working in locations where travel to campus is not feasible. Courses offered online will have a “D” designation as the section number following the course number.

MST Courses in health care management are offered off-site at the Marquam Hill Campus of OHSU. Currently, one or two courses per term are offered at this location. Please refer to our Web site www.mst.ogi.edu for updated course schedule information.

FOR-CREDIT CERTIFICATE PROGRAMS

ADMISSION REQUIREMENTS

• A completed application with $25 non-refundable application fee
• At least two years of relevant professional experience
• For non-native speakers of English, a score of 625 or better on the TOEFL examination

Individual courses are open to interested persons without the need to matriculate into the degree or certificate programs. Enrollment is available to any qualified student.

MANAGEMENT IN SCIENCE AND TECHNOLOGY CERTIFICATE

The Management in Science and Technology department offers a six-course certificate in Management in Science and Technology (MST). The following five courses are required, in addition to an additional management elective course chosen in consultation with a faculty advisor.

MST CERTIFICATE CORE COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MST 510 (D)</td>
<td>The Global Environment</td>
<td>3</td>
</tr>
<tr>
<td>MST 512 (D)</td>
<td>Project Management</td>
<td>4</td>
</tr>
<tr>
<td>MST 520 (D)</td>
<td>Becoming an Effective Manager</td>
<td>4</td>
</tr>
<tr>
<td>MST 571 (D)</td>
<td>Managerial and Financial Accounting for Science</td>
<td>4</td>
</tr>
<tr>
<td>MST 573 (D)</td>
<td>Technology Marketing</td>
<td>4</td>
</tr>
</tbody>
</table>

• ELECTIVE: To be chosen after consultation with faculty advisor

HEALTH CARE MANAGEMENT CERTIFICATE

The certificate in Health Care Management (HCM) is designed for working professionals in administration, reimbursement or management roles in health care organizations. The program provides an overview of the financial, policy, organizational and operational environments of health care-related enterprises. Students gain focused skills for designing and managing organizations engaged in the delivery of health care.

The Health Care Management Certificate blends the unique management and planning expertise within the M.S. in Management faculty with those of recognized professionals in the health care community at OHSU and elsewhere.

The program consists of six courses, including four core (required) courses and two elective choices, for a total of at least 20 credits, as listed below.

HCM CERTIFICATE CORE COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MST 560</td>
<td>The Organization, Financing, and History of Health Care Delivery in the United States</td>
<td>4</td>
</tr>
<tr>
<td>MST 561</td>
<td>Managerial and Financial Accounting for Health Care Professionals</td>
<td>4</td>
</tr>
<tr>
<td>MST 562</td>
<td>Health Care Program</td>
<td>4</td>
</tr>
<tr>
<td>MST 563</td>
<td>The Regulation and Legislation of Health Care Delivery</td>
<td>4</td>
</tr>
<tr>
<td>MST 564</td>
<td>Business Planning and Strategy</td>
<td>4</td>
</tr>
<tr>
<td>MST 565</td>
<td>Managing People</td>
<td>4</td>
</tr>
<tr>
<td>MST 566</td>
<td>Health Care Information</td>
<td>4</td>
</tr>
<tr>
<td>MST 567</td>
<td>Health Care Technology</td>
<td>4</td>
</tr>
<tr>
<td>MST 568</td>
<td>New Trends in Health</td>
<td>4</td>
</tr>
<tr>
<td>MST 569</td>
<td>Health Care Marketing</td>
<td>4</td>
</tr>
</tbody>
</table>

The following courses from MST and other OHSU departments may also be used as electives, as may other Oregon University System courses, by petition to the department.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MST 512 (D)</td>
<td>Project Management</td>
<td>4</td>
</tr>
<tr>
<td>MST 520 (D)</td>
<td>Becoming an Effective Manager</td>
<td>4</td>
</tr>
<tr>
<td>MST 522 (D)</td>
<td>Influencing Change</td>
<td>3</td>
</tr>
<tr>
<td>MST 541</td>
<td>Leadership and Communication Skills</td>
<td>3</td>
</tr>
</tbody>
</table>

MASTER OF SCIENCE DEGREE PROGRAM

ADMISSION REQUIREMENTS

The general admission requirements for the institution apply to the M.S. in Management in Science and Technology program with the following additions or exceptions:

• A minimum of two years of full-time work experience — preferably at the professional, supervisory or managerial level — in a technical, scientific, business or related area.

• Recommended TOEFL score of 625 (paper-based test)/263 (computer-based test)/107 (internet-based test) if English is not the applicant’s first language. Scores are not required for students who earned an undergraduate degree in the United States, or who have worked for at least two years in an organization conducting business primarily in English.

• GMAT or GRE scores are not required.

Part-time students may apply for admission to the M.S. in Management program during any quarter. Full-time students are strongly encouraged to consult with an advisor for academic planning.

DEGREE REQUIREMENTS

OGI offers a non-thesis Master of Science in Management in Science and Technology. All M.S. Students must take the master’s degree core sequence, consisting of the following courses or the equivalent. The courses listed below are offered both on-campus and online. Either format is acceptable for the M.S. degree. To earn the degree, students must complete a minimum of 52 credits with a cumulative GPA of 3.0 or better.

M.S. CORE COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MST 510 (D)</td>
<td>The Global Environment</td>
<td>3</td>
</tr>
<tr>
<td>MST 512 (D)</td>
<td>Project Management</td>
<td>4</td>
</tr>
<tr>
<td>MST 513 (D)</td>
<td>Operations Management</td>
<td>3</td>
</tr>
</tbody>
</table>
For the best possible Capstone experience, students form teams three to six months in advance of the quarters in which they plan to take Capstone Project: Business Plan (MST 550 and MST 551). Capstone **prerequisites** are: MST 520, MST 571, MST 573, and instructor approval. MST 530, MST 541, MST 572, MST 574, and MST 590/591, are **strongly recommended** prior to Capstone, which should be taken as close to the end of a student’s studies as possible.

**M.S. Electives**

All M.S. students must take between 4 and 6 elective courses selected from the general list of electives.

By appropriate choice of the following **suggested elective groups** students can create a program of courses that provides depth in specific areas, as the examples listed below illustrate. Other combinations of courses can be selected at the option of the student.

**Managing Technology Organizations**

- MST 509 Commercialization Practicum
- MST 540 International Management in Science and Technology
- MST 541 Leadership and Communication Skills
- MST 544 Strategic Alliances and Acquisitions
- MST 549 Applied Business Forecasting
- MST 574 Going to Market: Delivering Value to Customers and Shareholders

**Leadership and Collaboration**

- MST 521 Managing People in Organizations
- MST 522 Influencing Change in Organizations
- MST 540 International Management in Science and Technology
- MST 541 Leadership and Communication Skills
- MST 542 Business Ethics and Corporate Social Responsibility
- MST 544 Strategic Alliances and Acquisitions

**Commercialization and Innovation**

- MST 509 Commercialization Practicum
- MST 523 New Product Development
- MST 525 Managing Creativity and Innovation
- MST 531 Software Commercialization
- MST 544 Strategic Alliances and Acquisitions
- MST 574 Going to Market: Delivering Value to Customers and Shareholders

**Managing Software Organizations**

- CS 516 Introduction to Software Engineering
- MST 521 Managing People in Organizations
- MST 531 Software Commercialization
- MST 540 International Management in Science and Technology
- MST 541 Leadership and Communication Skills

**Managing Health Care Organizations**

- MST 541 Leadership and Communication Skills
- MST 560 The Organization, Financing, and History of History of Health Care Delivery in the United States
- MST 563 The Regulation and Legislation of Health Care Delivery
- MST 564 Business Planning and Strategy in the Health Care Industry
- MST 565 Managing People in Health Care Organizations
- MST 569 Health Care Marketing

Students may also petition the department for elective credit for other OGI academic courses relevant to the theory or practice of management, or to recognize credit for elective courses taken in the OMSE (Oregon Master of Software Engineering), MINF (Medical Informatics), or EMGT (Portland State University Engineering Management) programs as appropriate.
JAMES J. HUNTZICKER
Professor and Department Head
Ph.D., Physical Chemistry
University of California, Berkeley, 1968
jimhz@admin.ogi.edu

JACK RAITON
Senior Fellow
MBA, Finance and Statistics
University of Washington, 1967
raitonj@ohsu.edu

Having previously served as chief financial officer of Planar Systems and as corporate controller of Tektronix, Jack brings a wealth of high-level management experience in local industry to the MST department. He is active in the leadership of the American Electronics Association and Financial Executives International, and serves on the Advisory Boards of Compli, Inc. StoriedLearnings, and two high tech start-ups. Jack earned his BS in Mathematics from Oregon State University in 1966 and his MBA in Finance and Statistics from the University of Washington in 1967. He attended Harvard University’s Advanced Management Program, and passed the CPA exam in 1979.

AREAS OF EXPERTISE
Performance measurement, capital structure, stock options and incentive plans, forensic accounting.

NICOLE A. STECKLER
Associate Professor
Ph.D., Organizational Behavior
Harvard University, 1990
steckler@ohsu.edu

RESEARCH INTERESTS
Information-sharing across organizational boundaries; leading organizational change; interpersonal communication and influence in organizations; and tools for diagnosing and improving leadership effectiveness.

REPRESENTATIVE PUBLICATIONS
ADJUNCT FACULTY

PAUL ABEL, PH.D.
Blue Research

JEAN-CLAUDE BALLAND, PH.D.
JCB Associates

GREG CHARLES
Applied Business Forecasting, LLC

SUSAN COOMBES
Legacy Health Systems

LESLIE COPLAND
Waggener Edstrom

LINDA CRAFTS, PH.D.
Cumulus Resources LLC

AARON CRANE
Salem Hospital

TOM FLORA, D.ED.
OHSU

RICHARD FOURNIER
Business Computer Institute

DAVID GARTEN
Intel, Ret.

DON GRANT
Business Consulting Services

ROBERT HARMON, PH.D.
Portland State University

DON IRVING
PriceWaterhouseCoopers, Ret.

DERYL JONES
Adventist Hospital

JILL KELLY, PH.D.
Women's Journal

MARIANNE KOCH, PH.D.
Mittleman Jewish Community Center
Portland Jewish Academy

RITA LAXTON, PH.D.
City of Hillsboro

KATHY LONG HOLLAND
LongSherpa/Eco-D

ROY MAGNUSSON, M.D., MBA
OHSU

SUZANNE MALEK, MBA
Independent Consultant

KATHY MANGEL DAVIS
Professionally Speaking

MICHAEL MCLEAN
AC Transit

DEIRDRE MENDEZ, PH.D.
Foreign Business Management Consultants

MICHAEL NEAL, PH.D.
Intel, Ret.

PAUL NEWMAN, PH.D.
Cooper Mountain Research, Inc.

JEFF OLMANN
Synergy Professional Services

JODY PETTIT, M.D.
Oregon Healthcare Quality Corporation

JESSE REEDER
Leadership Dynamics

THOI TRUONG
CNP

JAMES WADDELL
Tektronix, Inc., Ret.

JOHN WALLNER
Tektronix, Inc.
COURSE DESCRIPTIONS

Master's and certificate students should register for the 5xx class and doctoral students should register for the 6xx class when available.

5xx Graduate courses offered primarily in support of master's programs. May be used toward a doctoral program as appropriate.

6xx Graduate courses offered primarily in support of doctoral programs. May be used toward a master's program as appropriate.

BIOMEDICAL ENGINEERING

BME 501 M.S. Non-Thesis Research
Supervised project research for Master's students who are not pursuing a thesis.
Variable and repetitive credit

BME 502/602 Independent Study
Independent study allows a student to work one-on-one with a faculty member on selected topic(s) of interest. Registering for independent study requires pre-approval from the faculty member and the student's academic department. For letter grade only.
Variable and repetitive credit

BME 503 M.S. Thesis Research
Supervised original research towards a thesis for the Master's degree. Consent of a supervising faculty member is required for approval to begin M.S. thesis research. Variable and repetitive credit

BME 504/604 Professional Internship
Professional internship credits provide students an opportunity to earn credit for relevant work experience in industry. Students gain valuable industrial experience that allows them to both apply the knowledge gained in the classroom and prepare for careers following graduation. Students on F-1 or J-1 visas must obtain prior written approval for internships from OGI's Office of International Students and Scholars before enrolling. Enrollment requires a faculty advisor and is limited by the number of internship opportunities available.
Variable and repetitive credit

BME 505/605 Readings in Biomedical Engineering
This course is designed to teach critical evaluation of information in the field of Biomedical Engineering. Students will read articles and papers on timely topics related to the student's area of interest. Students are required to present summaries of the readings and to lead class discussions.
0 credit/term, repetitive

BME 506/606 Special Topics
Special topic courses are offered in areas of particular relevance to the research interests of faculty or in response to industry needs. Special Topic courses are subject to change and are offered intermittently. Special topics classes will be listed in the online class schedule when offered.
3 credits

BME 507/607 Biomedical Engineering Seminar
This seminar course will feature presentations and discussions on topics in biomedical engineering that exemplify the wide range of applications of biomedical engineering to science and medicine. The goals are to provide the students with an overview of the diverse opportunities for research and application, to foster development of critical analysis and thinking, and to stimulate creative problem solving and research planning.
0 credit/term, repetitive

BME 522/622 Biomedical Optics I: Tissue Optics
Light propagation in tissue: This course treats light transport in scattering and absorbing media such as biological tissue. Light transport is modeled using a variety of theories and computational techniques, including Monte Carlo simulations and approximate solutions of the radiative transport equation. Steady-state and time-dependent problems are treated. Spectroscopy and fluorescence measurements are introduced. Optical imaging techniques are presented. Students learn the basics required for design of optical devices for therapy and diagnostics.
3 credits

BME 523/623 Biomedical Optics II: Laser Tissue Interactions
Physics of laser-tissue interactions: The course treats the immediate physical processes that accompany the absorption of light by biological tissues, including photochemical reactions, heating and tissue coagulation, vaporization, creation of plasmas, and production of stress waves in tissue. Such processes are modeled using finite-difference techniques. Applications in medicine and biology are discussed. Prerequisite: BME 522/622 Biomedical Optics I, or permission of instructor.
3 credits

BME 524/624 Biomedical Optics III: Engineering Design
The students work as a team in preparing five business plans throughout the quarter. Each business plan is devoted to a potential medical device or protocol using optical technologies. The team is divided into a CEO, scientific officer, marketing manager, regulatory affairs manager, and manufacturing manager. The roles are rotated amongst the students for each business plan. Feasibility studies are conducted in a laboratory exercise designed by the students. The team formally presents a business plan every two weeks. Prerequisite: BME 523/623 Biomedical Optics II, or permission of instructor.
3 credits

BME 525/625 Optical Nondestructive Evaluation
This course is a graduate-level introduction to the use of optical techniques for addressing issues in solid and fluid mechanics in the biomedical environment. The course emphasizes both theoretical and practical aspects of the use of light for evaluating displacements, strains, flows and motions in biological tissues and structures. Suggested prerequisites: Physical and/or geometrical optics, mathematics through differential equations, MATLAB programming skills.
3 credits

BME 526/626 Computational Approaches to Laser Interactions with Biological Tissues
Lasers and light from alternative conventional sources interact with biological tissues or other complex media through photochemical, photothermal and photomechanical mechanisms. This course will employ computational methods to simulate interaction of lasers with tissues. Compartitional modeling will model photochemical interactions. Green's function and finite difference techniques will model thermal and water diffusion, surface evaporation, and explosive vaporization. Arrhenius rate process calculations will model thermal damage, thermoelastic expansion and velocity potential models will simulate pressure wave generation and propagation, spallation/cavitation models will model initiation and growth of laser-induced material defects leading to fragmentation. These methods provide a tool kit for handling a wide variety of laser effects in biological tissues.
3 credits

BME 527/627 Computational Approaches to Light Transport in Biological Tissues
Understanding the movement of light through complex biological tissues or other complex media is the first step in design of optical devices or clinical protocols in medical applications of lasers and light. This course will use various computational methods to simulate such light propagation: (1) wave theory to discuss the early loss of coherence and polarization as light initially enters tissue; (2) small angle scattering to discuss the transition of ballistic photons into scattering photons; (3) Monte Carlo simulations to discuss a variety of issues in energy propagation, including irregular boundary conditions; (4) diffusion theory to predict light fields distant from sources; (5) perturbation theory to approximate optical heterogeneities with absorption and scattering properties that vary from the background medium properties. These methods provide a tool kit for handling a wide variety of optical problems encountered in design of optical systems involving tissues.
3 credits

BME 528/628 Physical and Geometrical Optics
First-order Gaussian optics and thin-lens system layout. Photometric theory applied to optical systems. Topics include: the eye, magnifiers, microscopes, matrix optics, Seidel aberrations, scalar diffraction theory, Fresnel and Fraunhofer diffraction, and interferometry.
3 credits

BME 540/640 Fluid Mechanics and Biotransport
This course will introduce basic concepts of fluid mechanics and convective mass transport. It will start with a derivation of mass, momentum and energy conservation equations for fluid flows. The importance of non-dimensional parameters such as
Reynolds number and the Womersley parameter will be extensively discussed, and non-dimensional equations will be derived. Other topics will include Bernoulli’s equation, low and high Reynolds number flows, oscillatory flows, interactions of fluid flows with tissue and boundary layers. The final part of the course will cover the derivation and use of mass transport equations in fluid flows. Examples from different areas of biomechanics will be discussed throughout the course. 3 credits

BME 541/641 Mechanical Properties of Tissues I
This course introduces the application of continuum mechanics to biological tissues. A rigorous derivation of stress and strain tensors, the theory of elasticity and the theory of viscoelasticity are presented. The bulk of the course focuses on the development of pseudo-strain energy density functions to describe the hyperelastic behavior of biological tissues. Suggested Prerequisites: Mathematics through differential equations, some familiarity with linear algebra and matrix manipulations, MATLAB programming skills.

3 credits

BME 542/642 Mechanical Properties of Tissues II
This course is a direct continuation of BME 541/BME 641. The mechanical behavior of specific biological tissue types, including hard and soft tissues, is discussed in detail. A rigorous introduction to experimental and computational fluid dynamics is presented, along with discussions regarding the influence of fluid flows on the mechanical behavior and remodeling of biological and engineered tissues.

3 credits

BME 543/643 Advanced Tissue Engineering Techniques
This course is designed to teach the techniques necessary to perform advanced research in Tissue Engineering. Techniques include the latest in imaging, stem cell isolation, growth factor treatments and mechanical stimulation of engineered tissues. Prerequisites: CONJ 661, BME 541/641, and BME 542/642.

3 credits

BME 544/644 Advanced Biomaterials
This course is a seminar-style course in which students critically evaluate key papers in the biomaterials literature. Specific topics will change with developments in the field as well as with the students’ interests. Students may take this course more than once. Prerequisites: BME 541/641 and BME 542/642.

3 credits

BME 545/645 Biocompatibility: Host-Implant Interactions
This course provides the student with a firm understanding of how the body reacts to implanted biomaterials at the cell, tissue, organ, and systemic levels. In addition, specific characteristics that hinder or improve the biocompatibility of materials will be addressed. Prerequisites: CONJ 661 and BME 542/642.

3 credits

BME 565/665 Introduction to Computational Neurophysiology
In this course students will explore how neurons communicate through electrical signals, how information transmission between neurons occurs, and how connectivity between neurons determines activity patterns and results in specialized behavior. Topics to be covered include Hodgkin-Huxley models of simple and complex morphologies; central pattern generators; models of simple invertebrate circuits; integrate-and-fire and spike-response neuron models for use in network models; models of neural development, ocular dominance and orientation columns; and rate versus spike-timing dependent plasticity. A solid math background is needed; some programming (in MATLAB) will be required.

3 credits

BME 568/668 Auditory and Visual Processing by Human and Machine
Interaction between humans and machines could be greatly enhanced by machines that could communicate using human sensory signals such as speech and gestures. Knowledge of human information processing including audition, vision, and their combination is, therefore, critical in the design of effective human-machine interfaces. The course introduces selected phenomena in auditory and visual perception, and motor control. Students learn how to interpret empirical data, how to incorporate these data in models, and how to apply these models to engineering problems. The anthropomorphic (human-like) signal processing approach is illustrated on engineering models of percepual phenomena.

3 credits

BME 569/669 Analytical Electron Microscopy for Biomedical Engineers
This course will introduce the biomedical engineering student to scanning and transmission electron microscopy analysis and characterization techniques applied to the broad range of materials used in modern biotechnology. Operating principles of electron microscopes, imaging and analysis volume resolutions will be covered. Electron beam/specimen interactions will be shown to be the basis of imaging and analysis. Secondary, transmission and backscatter electrons as well as characteristic x-rays produced by these interactions generate signals as the beam position is changed on the specimen which all provide qualitative and quantitative information on the micron, submicron and nanoscales if necessary. Specimen preparation techniques for hard and soft tissues, composites, plastics, ceramics, metals and semiconductors will also be covered. The techniques will include cryo-drying, critical point drying, focused ion beam milling, microtoming, electropolishing, mechanical polishing and various coating techniques for non-conductors. The student will learn to recognize artifacts of specimen preparation and examination. Operation and effective use of the scanning electron microscope in a student defined research project are major goals of the course. It is expected the student will work on materials important in the student’s research program.

3 credits

BME 571/671 Speech Systems
Speech is one of the most natural modes for communication and carries information from many sources. The explosive growth of communications and computer technologies puts new demands on techniques for machine extraction of information content of speech signals, for its storage or transmission, and for reconstruction of the speech signal from its parametric representation. The course covers techniques for processing of speech signal used for speech coding and synthesis, enhancement of degraded speech, speech recognition, speaker recognition, and language identification.

3 credits

BME 581/681 Fourier Analysis
Fourier analysis is used in nearly every field of engineering, including biomedical engineering. It provides a unifying mathematical approach to the study of networks, electrical and mechanical systems, linear systems, image and signal processing, as well as many other systems. This course will provide a solid introduction to application of Fourier theory in biomedical engineering. Topics include: convolution and correlation; Fourier theorems; Numerical transforms; Sampling and series; Discrete Fourier transform and the FFT. Related transforms. Prerequisites: one year of calculus.

3 credits

BME 582/682 Nature and Analysis of Biomedical Signals
This course will explore, from an engineering perspective, the physiological origins and characteristics of signals that are used medically to monitor patient functions and scientifically to study biological systems. The signals will include arterial and venous blood pressures, electrocardiogram, electroencephalogram, electromyogram, peripheral nerve action potentials and pulse oximetry. Topics will include physiological signal generators, instrumentation, signal processing, and modeling of biological systems. The format will include lectures, lab demonstrations and visits to clinical facilities. Prerequisite: EE 580/680.

3 credits

BME 601 Prequalifying Ph.D. Research
Supervised Ph.D. research prior to passing the department's qualifying exam. Variable and repetitive credit

BME 603 Ph.D. Dissertation Research
Research toward the dissertation for the Ph.D. degree occurring after passing the qualifying exam. Variable and repetitive credit

CS 501 M.S. Non-thesis Research
Supervised research for up to 6 credits as a component of the non-thesis master's degree. Students are required to produce concrete research deliverables, including a final report equivalent to a CSE technical report. Each 3 credits of CS 501 may count as one class to fulfill the M.S. non-thesis graduation requirements up to 6 credits.

Variable and repetitive credit

CS 502/602 Independent Study
Independent study allows a student to work one-on-one with a faculty member on selected topic(s) of interest. Registering for independent study requires pre-approval from the faculty member and the student's academic department. For letter grade only. Variable and repetitive credit
CS 503 M.S. Thesis Research
Research toward the thesis for the M.S. degree. Variable and repetitive credit

CS 504/604 Professional Internship
These courses provide an opportunity to earn credit for relevant work experience in industry. Students gain valuable industrial experience that allows them to both apply the knowledge gained in the classroom and prepare for careers in computer science. A written report must be submitted to the CSEE faculty advisor at the end of the experience. Enrollment requires a faculty advisor and is limited by the number of internship opportunities available. Variable and repetitive credit

CS 506/606 Special Topics
Under this number, we offer courses of particular relevance to the research interests of faculty or in state-of-the-art subjects of interest to the community. Special topics classes will be listed in the online class schedule when offered. 3 credits

CS 511/611 Principles of Compiler Design
This course introduces the basics of building a compiler using a multiphase translation process. It covers lexical analysis, parsing and translation to abstract syntax using modern parser generator technology. It discusses binding of identifiers and symbol table organization, and a variety of intermediate representations that are suitable for back-end analysis. It investigates back-end transformations and optimizations for a number of languages. Other topics include type checking, static analysis and basic run time support. Compiling is essentially a process of symbolically manipulating program representations represented by tree and graph-like data structures. Because of this, we will use tools that facilitate symbolic manipulation and definition of such structures as parser and lexical generators, and tools for generating code from pattern-based descriptions. Suggested prerequisite: CSE 533. 3 credits

CS 512/612 Introduction to Object-Oriented Programming
This course provides a rigorous introduction to the object-oriented programming paradigm. It covers the basics of object-oriented analysis and design techniques. One way to learn this background material is by taking CSE 519/619, Object-Oriented Analysis and Design. In CSE 529, students gain a thorough understanding of software artifacts. Related topics include software metrics, project management, configuration management, quality assurance, peer reviews, risk management and process improvement. This course presents an integrated view of these topics and related issues. It is an essential course for anyone working in development, maintenance, management or related areas in a software organization. 3 credits

CS 520/620 Software Architecture
The architecture of a software system specifies the components, visible properties of the components, and the structural and behavioral relationship among the components of that system. Design patterns are now commonly used to define the language for solving architectural problems and for documenting the solutions. Different architectural design patterns, such as pipes and filters, layers, and O/O frameworks, solve different problems and can be harmful if applied in the wrong context. Software architecture strongly influences system performance, reliability, safety, security, and other quality-of-service attributes. Software architecture can also facilitate software reuse and the development of product families. In this course, we will learn a core vocabulary of published architectural patterns and develop skill in recognizing and applying these patterns. In addition, we will examine case studies of large systems architecture development and evolution. Lectures will provide structure and points of view missing from the textbook. The course will encourage recognition and discussion of controversial ideas from the literature on software architecture. Students will learn heuristics for design and evaluation of software architectures. Coursework will emphasize frequent small tests and a hands-on project to gain skill in collaborating and reasoning about architectures. 3 credits

CS 521/621 Introduction to Computer Architecture
This course provides a broad introduction to computer architecture. It covers a large amount of material in moderate depth, providing a good understanding of the basic issues in computer system design. Specifically, the course covers instruction set design, pipelining, the memory hierarchy, I/O systems, networking issues and multiprocessors. Example systems include the Intel x86, MIPS and DEC Alpha processors. Prerequisites: Experience writing software, preferably with some C or assembler programming. NOTE: Computer architecture has become a quantitative science, so there will be considerable algebraic manipulation involved in the performance analysis component of the course. 3 credits

CS 529/629 Object-Oriented Programming
This course provides a rigorous introduction to the object-oriented programming paradigm. It is for students who are already familiar with the concept of object-orientation and with object-oriented analysis and design techniques. One way to learn this background material is by taking CSE 519/619, Object-Oriented Analysis and Design. In CSE 529, students gain a thorough understanding of incremental programming, type-safety, polymorphism, encapsulation and set-based abstraction, and apply these concepts through a variety of programming projects. We study several programming languages, including Java and Smalltalk, so students are exposed to different realizations of these concepts and gain an appreciation for the programming language design space. We also look at published object-oriented design patterns and see how they can be implemented in different object-oriented programming languages. Students may be required to read appropriate research papers, complete several short programming assignments, complete a substantial programming project and write some short essays. Suggested prerequisite: CSE 519/619 or equivalent. 3 credits

CS 532/632 Analysis and Design of Algorithms
An introduction to the design and analysis of algorithms. The course covers design techniques, such as dynamic programming and greedy methods, as well as fundamentals of analyzing algorithms for correctness and time and space bounds. Topics include advanced sorting and searching methods, graph algorithms and geometric algorithms. Other areas vary from year to year and may include computational geometry, matrix manipulations, string and pattern matching, set algorithms, polynomial computations and the fast Fourier transform. Suggested prerequisites: Data structures and discrete mathematics. 3 credits

CS 533/633 Automata and Formal Languages
Automata theory introduces fundamental models that are used over and over again in computer science for programming languages, in compiler construction and in algorithms. These models are a valuable part of the repertoire of any computer scientist or engineer. This course introduces progressively more powerful models of computation, starting with finite automata and moving to stack and tape (Turing) machines. It also presents the regular, context-free, recursive and recursively enumerable languages and shows how they correspond to the various models of computation and to generation mechanisms such as regular expressions and grammars. The emphasis is on understanding the properties of these models, the relationships among them and how modifications such as nondeterminism and resource bounds affect them. The course includes application of these concepts to problems arising in other parts of computer science. Suggested prerequisite: Discrete mathematics. 3 credits

CS 541/641 Database Implementation
This course explores the internals of relational database management systems. This course will give students a strong grounding in the design tradeoffs and implementation issues that are addressed by large relational database systems. The course will also help students understand how the tuning parameters of commercial databases can affect performance, and will help database application programmers to create applications.
better tuned to take advantage of the database internals. Typical topics discussed include file and index implementation, buffer management, query processing, cost-based query optimization, concurrency control, transaction processing, and logging and recovery implementations. The class includes hands-on programming assignments. Suggested prerequisite: CSE 514; UNIX and C/C++ programming experience is recommended.

**CS 547/647 Statistical Pattern Recognition**

Students will learn fundamental theory and practices that are common to a broad range of pattern recognition applications and technologies, and apply principles to real-world examples. The emphasis is on developing theoretical and practical tools that provide grounding in pattern recognition problems and methods, rather than on showcasing particular technologies. The course will benefit those whose work may use any of a variety of recognition technologies in broad-ranging applications such as speech and image processing, data mining, finance. Topics include: random vectors, detection problems (binary decision problems), likelihood ratio tests, ROC curves, parametric and non-parametric density estimation, classification models, theoretical error bounds and practical error estimation through cross-validation. Maximum likelihood and Bayesian parameter estimation, model-based clustering, feature extraction for dimensionality reduction and for classification.

**CS 550/650 Spoken Language Systems**

Spoken language systems will revolutionize how people interact with machines, replacing the keyboard and mouse with natural conversations. These systems will act like helpful human assistants and teachers for information access, commercial transactions, and learning. You’ll review the state of the art in building spoken language systems. You will gain hands-on experience using toolkits for building such systems, as well as learn the technologies needed for next-generation systems, such as robust parsing, semantic processing, dialogue management, and agent architectures. Class projects will be done using the CSLU toolkit, Tcl/Tk, and VoiceXML.

**CS 551/651 Structure of Spoken Language**

Speech is considered a key component in the future of human-computer communication. However, the success of speech recognition and text-to-speech synthesis systems depends on development of the technology as well as further research advances. Research and development of spoken-language technology is facilitated by an understanding of the acoustic and symbolic structure of language, as well as the capabilities and limitations of current systems. This course will present some of what is known about speech in terms of phonetics, acoustic-phonetic patterns, and models of speech perception and production. The goals are for the student to understand how speech is structured, understand and identify acoustic cues (especially in different phonetic contexts), and understand how this information may be relevant to automatic speech recognition or generation systems. 3 credits

**CS 552/652 Hidden Markov Models for Speech Recognition**

Hidden Markov Model-based technology is widely used in today’s speech recognition systems. This course is an introduction to speech recognition using HMM technology. Topics include dynamic time warping, Markov Models and Hidden Markov Models (discrete, semi-continuous, and continuous), vector quantization, Gaussian Mixture Models, the Viterbi search algorithm, the Forward-Backward training algorithm, language modeling, and speech-specific adaptations of HMMs. The course is focused on understanding these fundamental technologies and developing the main components of speech recognition systems. Suggested prerequisite: C programming experience.

**CS 553/653 Speech Synthesis**

This course will introduce students to the problem of synthesizing speech from text input. Speech synthesis is a challenging area that draws on expertise from a diverse set of scientific fields, including signal processing, linguistics, psychology, statistics, and artificial intelligence. Fundamental advances in each of these areas will be needed to achieve truly human-like synthesis quality and advances in other realms of speech technology (like speech recognition, speech coding, speech enhancement). In this course, we will consider current approaches to sub-problems such as text analysis, pronunciation, linguistic analysis of prosody, and generation of the speech waveform. Lectures, demonstrations, and readings of relevant literature in the area will be supplemented by student lab exercises using the Festival text-to-speech system and other hands-on tools.

**CS 555/655 Biological and Linguistic Sequence Analysis**

This course will cover algorithms and models for statistical sequence analysis, which are widely used in biological sequence processing as well as in natural language processing. The class will emphasize real world problems and data sets, with examples taken from tasks like protein sequence alignment, RNA secondary structure prediction, and machine translation. Topics will include: pairwise and multiple sequence alignment algorithms; sequence modeling approaches like Hidden Markov Models and Markov Random Fields; efficient sequence labeling algorithms for use with various flavors of stochastic grammars; phylogenetic tree building; and sequence (e.g. text) compression algorithms.

**CS 559/659 Machine Learning**

This course provides a broad introduction to techniques for building computer systems that improve through experience. It provides both conceptual grounding and practical experience with several learning systems. The course provides grounding for advanced study in statistical learning methods, and for work with adaptive technologies used in speech and image processing, robotic planning and control, diagnostic systems, complex system modeling, and iterative optimization. Topics include: learning paradigms and concept learning, decision trees, artificial neural networks, statistical sampling and empirical error estimation, Bayesian learning (including an introduction to belief networks), clustering, principal and independent component analysis, generalization theory, memory-based (instance) techniques, evolutionary computation, and reinforcement learning. Students will gain practical experience implementing and evaluating systems applied to pattern recognition, prediction, and optimization problems. Suggested prerequisites: Some experience with multi-variate calculus and linear algebra, at least one high-level programming language, and an elementary undergraduate course in probability and statistics.

3 credits

**CS 560/660 Artificial Intelligence**

This course surveys the foundations and applications of symbolic approaches to artificial intelligence. The approach emphasizes the formal basis of automated reasoning and includes an introduction to programming in Prolog. Fundamentals covered include search, knowledge representation, automated inference, planning, nonmonotonic reasoning and reasoning about belief. Applications include expert systems, natural language processing and agent architectures.

3 credits

**CS 562/662 Natural Language Processing**

This course covers key algorithms and modeling techniques for processing human language sequences, which are needed for applications such as Automatic Speech Recognition and Machine Translation. Both statistical and symbolic approaches to modeling natural language phonology, morphology, and syntax are presented, along with widely used algorithms for efficiently learning and applying different kinds of natural language grammars. There is an emphasis on algorithms and data structures that scale up to handle very large real-world data sets, such as newswire text. The course includes several challenging hands-on programming assignments. Suggested prerequisite: CSE 560 or equivalent. C/C++ programming experience is highly recommended, as is familiarity with regular expressions.

3 credits

**CS 564/664 Introduction to Human-Computer Interaction**

This course emphasizes the user experience and covers material that is beneficial to designers on an understanding of real users and the specific tasks they need to accomplish when computing. In the pursuit of optimal user support, a multidisciplinary approach to system design and evaluation is stressed. The course reviews basic methods, terminology, viewpoints, and activities in the broad field of human-computer interaction. It includes user interface principles, design guidelines, and practical issues in user interface design as well as
user interface evaluation criteria and metrics. Students gain hands-on experience by implementing and evaluating graphical, verbal, and multimodal user interfaces. An introduction to this topic is essential for everyone working in the field of computer science. 3 credits

**CS 567/667 Developing User-Oriented Systems**
This course explores a range of issues and methods needed to design and evaluate user-oriented software applications. Topics focus on field and ethnographically based design studies, participatory design methods, user laboratory studies and usability testing. The purpose is to have access to a range of methods that help uncover opportunities, breakdowns and interactions that affect the design and use of developing systems. Students are challenged to evaluate the underlying perspectives of the approaches and decide which approach or combination of approaches works best for particular problems. They apply the methods in field and classroom exercises and produce a real-world project or paper using course methods. The intended result is to make students more effective not only at gathering relevant user-based information, but also at integrating it into the development process. Note: Cannot enroll for credit for both this and CS 506 DMS. 3 credits

**CS 568/668 Empirical Research Methods**
This course introduces principles of experimental design and data analysis for empirical research. Topics include the goals and logic of experimental design, hypothesis formation and testing, probability and sampling theory, descriptive statistics, correlation and regression, basic parametric and nonparametric tests of statistical significance (e.g., Binomial, t-test, chi-square, analysis of variance), standard designs for single- and multi-factor experiments, and strategies of scientific investigation (e.g., Exploratory vs. Directed). The course is fundamental for anyone who plans to conduct independent research or needs to evaluate critically the research of others. Students participate in designing and analyzing data to answer scientific questions and present the results of these activities both orally and in writing. 3 credits

**CS 601 Ph.D. Pre-qualifying Research**
Ph.D. supervised research activity. Variable and repetitive credit

**CS 603 Ph.D. Dissertation Research**
Research toward the dissertation for the Ph.D. degree. Variable and repetitive credit

### ENVIRONMENTAL AND BIOMOLECULAR SYSTEMS

**EBS 501 M.S. Non-Thesis Research**
Supervised research as a component of the M.S. non-thesis degree. The plan of research and final deliverables must be approved by the research advisor and the SPC. Deliverables include a written report and/or seminar given as part of EBS 507A. 3 credits

**EBS 502/602 Independent Study**
Typically involves a scholarly and critical review of an advanced scientific topic by one or more students together with one or more faculty members. Requirements of the student typically include a written review paper and/or a seminar to be given as part of EBS 507A/607A - EBS 507B/607B - EBS 507C/607C. Selection of this course for credit and the topic to be investigated must be approved by the SPC. For letter grade only. Variable and repetitive credit

**EBS 503 M.S. Thesis Research**
Research toward the M.S. thesis degree. Variable and repetitive credit

**EBS 504/604 Professional Internship**
Professional internship credits provide students an opportunity to earn credit for relevant work experience in industry. Students gain valuable industrial experience that allows them to both apply the knowledge gained in the classroom and prepare for careers following graduation. Students on F-1 or J-1 visas must obtain prior written approval for internships from OGI’s Office of International Students and Scholars before enrolling. Enrollment requires a faculty advisor and is limited by the number of internship opportunities available. Variable and repetitive credit

**EBS 505C/605C Reading Group: Molecular Biology and Biochemistry**
Presentation and discussion of journal articles from the recent literature in molecular biology, genetics and biochemistry. 2 credits, repetitive

**EBS 505D/605D Reading Group: Environmental Science and Engineering**
Presentation and discussion of journal articles from the recent literature in environmental science and engineering. 2 credits, repetitive

**EBS 506/606 Special Topics**
Special topics courses are offered in areas of particular relevance to the research interests of faculty or in response to industry needs. Special Topic courses are subject to change and are offered intermittently. Special topics classes will be listed in the online class schedule when offered. Variable and repetitive credit

**EBS 507A/607A EBS Department Seminar**
Weekly seminars by invited guests. Public visitors are welcome. Schedules are available on the World Wide Web at www.ebs.ogi.edu/events/, or by request at info@ebs.ogi.edu. 0 credits, repetitive

**EBS 507B/607B Student Seminar: Metallobiochemistry**
Presentations and discussions of selected topics from the recent literature and of ongoing research projects in the department. 2 credits, repetitive

**EBS 510/610 Aquatic Chemistry**
General acid/base concepts (mono- and polyprotic systems); pH; making activity corrections; numerical calculations; titration concepts as applied to natural systems; buffer intensity; dissolved CO2 chemistry; acidity and alkalinity in open CO2 systems; minerals and their role in controlling natural water chemistry; solubility characteristics of oxide and hydroxides; introduction to redox chemistry in natural systems; pe-pH diagrams. 4 credits

**EBS 511/611 Advanced Aquatic Chemistry**
Role of complexing ligands in solution chemistry; redox chemistry in natural systems; pe-pH diagram construction and use; solid/solution interfacial considerations; the electrical double layer; and selected advanced topics. Prerequisite: EBS 510/610. 4 credits

**EBS 512/612 Biochemistry I: Proteins and Enzymes**
Primary, secondary and tertiary structure of proteins; enzyme mechanisms; enzyme kinetics. 4 credits

**EBS 513/613 Biochemistry II: Introduction to Molecular Biology**
DNA replication, RNA synthesis and protein synthesis, genetic code, gene regulation. 4 credits

**EBS 514/614 Biochemistry III: Metabolism and Bioenergetics**
Metabolism of carbohydrates, lipids and amino acids; bioenergetics; photosynthesis; oxidative phosphorylation. 4 credits

**EBS 515/615 Environmental and Biomolecular History of the Earth**
This course will explore the origin and evolution of the environment, including physical, chemical and biological contributions and interactions. Topics will be taught along a timeline from the origin of the earth to present day, and will include the biological and chemical evolution of Earth; an introduction to metabolism and microbial energetics; effect of the environment on microbial growth, activity and processes; microbial interactions and evolution of higher organisms. 4 credits

**EBS 516/616 Environmental Bioinorganic Chemistry**
This course covers bioinorganic chemistry in environmental systems. Topics will include oxidation-reduction cycles, metal speciation, receptors and uptake systems, micronutrient requirements and utilization, enzymology and distribution of enzymes in the environment. 4 credits

**EBS 517/617 Environmental Systems and Human Health**
This course will cover environmental hazards and their impact on human health and on natural ecosystems. It will include the assessment of molecular to global scale processes of 2 or 3 general topics (e.g., metal contaminants, organic contaminants, and infectious agents). Each year, the specific topics will be chosen corresponding to their societal significance and impacts on natural ecosystems and human health. Students will apply what they learn in class to a final project on a related topic of their choice. 4 credits
EBS 518/618 Metals in Biochemistry
Comprehensive study of the chemistry and biochemistry of metal ions in biological molecules and living systems. Topics include metalloprotein structure, metal ion specificity, biological oxidation mechanisms, metal ion catalysis in enzymes, metal ion transport and gene regulation. 4 credits

EBS 520/620 Coordination Chemistry
Structures and stabilities of transition metal coordination compounds with mono- and multi-dentate ligands; coordination compounds as models for biological metal centers; strategies for synthesis of transition metal complexes. 4 credits

EBS 523/623 Chemical Group Theory
Properties of mathematical groups; symmetry properties of molecules; symmetry groups, representations, and character tables. Applications of group theory to the study of structure and spectroscopy of organic and inorganic molecules; Hückel molecular orbital theory; ligand field theory; electronic spectroscopy and vibrational spectroscopy. 4 credits

EBS 525/625 Bioenergetics and Membrane Transport
Critical evaluation of the chemiosmotic theory with specific reference to oxidative phosphorylation, photophosphorylation and metabolite transport. Biochemical mechanisms of energy transduction common to bacterial and mitochondrial respiration, and bacterial and plant photosynthesis are reviewed. 4 credits

EBS 528/628 Enzyme Structure, Function and Mechanisms
Provides an in-depth analysis of the structural origins of protein interactions and catalysis that are the basis for biological function. The course develops the basic principles of structural biology through an overview of X-ray crystal structures and folding processes, acquainting the students with computational resources for protein structure analysis. The structural foundation is expanded into a detailed investigation of enzyme active sites, including the application of kinetic approaches to understanding enzymatic reaction mechanisms. 4 credits

EBS 530/630 Introduction to Bioinformatics
Primary literature of computational biology and hands-on experience in data manipulation from local and remote databases. 3 credits

EBS 535/635 Distribution and Fate of Organic Pollutants
Discussion of the physico-chemical processes that control the partitioning of organic chemicals in the environment. This introductory course considers all environmental compartments, water, soil and air, and partitioning between those phases. Recommended prerequisite: EBS 510/610. 4 credits

EBS 537/637 Chemical Degradation and Remediation
A thorough introduction to the transformation reactions that contribute to the fate of organic substances in the environment. The course covers pathways, mechanisms and kinetics of hydrolysis, oxidation, reduction, elimination, conjugation, etc. Treatment is balanced to reflect the importance of these processes in all types of environmental waters ranging from engineered systems to groundwater, surface water, rain and fog. Recommended preparation: EBS 510/610, 511/611 and/or 535/635. 4 credits

EBS 538/638 Air Pollution: Origins, Chemistry and Control
This course will focus on tropospheric air pollution with particular emphasis on the urban and regional scales. It will discuss the following items: basic structure of the atmosphere and relevant meteorological considerations; sources of tropospheric air pollutants; atmospheric photochemistry; the ozone, oxide of nitrogen and hydrocarbon chemical cycles; chemistry of toxic organic compounds in the atmosphere; gas and aqeous phase chemistry of sulfur dioxide; size distributions, lifetimes, origins and formation mechanisms of aerosols; measurement and control of atmospheric pollutants. 3 credits

EBS 540/640 Instrumental Methods in Biophysics I
Theory and application of physical techniques to problems in biochemistry, Optical, fluorescence, circular dichroism, infrared and Raman spectroscopy of chromophoric groups. Magnetic susceptibility and nuclear magnetic resonance of metalloproteins. 4 credits

EBS 541/641 Instrumental Methods in Biophysics II
Investigation of physical techniques particularly useful for studying metalloproteins. Electron paramagnetic resonance, electron spin echo, magnetic circular dichroism and X-ray absorption spectroscopy. The course has significant "hands-on" exposure to both instrumentation and computer simulation techniques. 4 credits

EBS 547/647 Uncertainty Analysis
A survey of basic probability concepts followed by introductions to several statistical advanced techniques that play an important role in environmental data analysis. Topics may include distribution functions, propagation of error, hypothesis testing, analysis of variance, experimental design, sampling theory, regression analysis, time-series analysis and spatial statistics techniques. The course provides a balance of theory and application using environmental data sets. 4 credits

EBS 550/650 Environmental Systems Analysis
Introduction to techniques of systems analysis applied to environmental quality management. Emphasis is on development and application of mathematical models with computer simulation and optimization. Analysis includes efficient computational algorithms and search techniques. Linear and separable programming applied to evaluate management alternatives. Applications to air, water, solid and hazardous waste management. Prerequisites: Computer programming and calculus. 4 credits

EBS 555/655 Computational Fluid Dynamics
This course describes advanced topics in computational fluid dynamics, including specialized discrete methods (e.g., for advection-dominated problems), formal analysis of stability and accuracy, and selected simulations of complex environmental and biological systems. Prerequisites: Advanced calculus and EBS 545/645. 4 credits

EBS 560/660 Introduction to Environmental Observation and Forecasting Systems
This course introduces environmental observation and forecasting systems and their application toward the enhanced understanding and management of natural resources. Emphasis is on estuaries and coasts. Students are exposed to a novel, cross disciplinary culture for understanding and interacting with environmental systems. This culture relies heavily on "real-time" generation of modeling and observational data, which are integrated and distributed through information networks designed to bring the right environmental information at the right time to the right user. Prerequisite: Instructor permission. 4 credits

EBS 561/661 Introduction to Spatial Sciences
Students will learn theoretical and practical applications of geo-spatial sciences within the context of Environmental Sciences and Engineering Geographic Positioning Systems (GPS) will be studied while performing practical, hands-on laboratory experiments using the latest in GPS equipment. Classroom discussions will focus on relating location on the Earth's surface to a common graticule. Horizontal and vertical datum, theoretical spheroids and ellipsoids, geoids and map projections will be discussed. Spatial relationships, or analysis, of continuous and categorical data will be addressed through the application of standard statistics and probability. ARCGIS, a popular Geographic Information System (GIS) software tool, will be stressed. 4 credits

EBS 562/662 Introduction to Remote Sensing of the Environment
This course will explore the acquisition, analysis and visualization of remotely sensed data. The physics behind the collection of remotely sensed data will be introduced as will both airborne-platform and satellite-platform sensors. Fundamentals of aerial photogrammetry, single-band, and multispectral and thermal infrared data will be addressed. Concepts of image statistics, radiometric and geometric corrections, spatial filtering and spectral transformations like the Normalized Difference Vegetation Index are explored. Supervised and Unsupervised classification schemes will be discussed as will change detection. The course pedagogy is designed to address the needs of the advanced Environmental Science and Engineering graduate student. While there is no prerequisite, the course incorporates many topics from EBS 561/661, "Introduction to Spatial Science." It is therefore recommended that students who are unfamiliar with classification methods and the fundamental concepts of Geographic Information Systems complete EBS 561/661 or equivalent. 4 credits
EBS 570/670 Groundwater and Watershed Hydrology
Hydrologic cycle, principles of unsaturated and saturated flow in the subsurface, characterization of groundwater/surface interactions, water balance, modeling of watershed-scale processes. 4 credits

EBS 571/671 Groundwater Modeling
Applied groundwater modeling using the finite difference method. Introduction to numerical methods for solving the partial differential equations for saturated and unsaturated subsurface flow. Model execution and calibration. Prerequisite: EBS 570/670. 4 credits

EBS 572/672 Contaminant Hydrology
Processes controlling subsurface contaminant movement in porous and fractured media, including groundwater flow, dispersion, diffusion, sorption, and degradation. Parameter estimation, mathematical and laboratory modeling of aquifers is also covered. 4 credits

EBS 573/673 Modeling in Contaminant Hydrogeology
This course is designed to be taken concurrently with EBS 572/672. It emphasizes the hands-on use of common mathematical models for groundwater flow and transport (e.g., MODFLOW/MT3DMS/MT3D/R moda) to examine real groundwater contamination problems. Prerequisite: EBS 572/672. 4 credits

EBS 575/675 Transport Processes
The aim of this class is to introduce fluid dynamics to graduate students. The basic properties of fluids and fluid motion will be studied and the students will be introduced to the equations governing fluid dynamics. Emphasis of the class will be on physics. Mathematical concepts when needed will be reviewed. 4 credits

EBS 578/678 Methods in Estuarine Oceanography: Field Observation
This course covers the fundamentals of estuarine and coastal oceanographic data collection using vessels and remotely moored equipment. Topics include vessel logistics and sampling, navigation systems, interfacing of instruments with personal computers, types of moorings and their deployment and recovery, and telemetry. 4 credits

EBS 580/680 Physics of Pacific Northwest Coastal Ecosystems
This course considers the impacts of climate, hydrology, and coastal, estuarine and fluvial circulation on Pacific Northwest coastal ecosystems. Special attention will be given to human impacts on ecosystem through alteration of their physical context. Examples will include downstream effects of water withdrawal, the interaction of climate change and climate cycles with salmonids and the coastal upwelling ecosystem, and the interaction of microbes, particles, consumers and estuarine circulation in estuarine turbidity maxima. Prerequisites: EBS 575/675 Transport Processes. 4 credits

EBS 581/681 Ecosystem Management and Restoration
This course will provide an overview of ecosystem management and restoration at the local and regional scale. It will follow the hydrologic cycle from upland watersheds through streams, rivers and estuaries to the ocean and will track important system parameters such as water flow and temperature. 4 credits

EBS 583/683 Environmental Law and Regulation
A survey of environmental law and regulation concepts essential to practicing scientists and engineers. Topics covered include the theory and practice of environmental regulation, environmental litigation, and legislation including Superfund (CERCLA), the Clean Water Act, the Resource Conservation and Recovery Act (RCRA), the Clean Air Act, and the Toxic Substances Control Act (TSCA). 3 credits

EBS 585/685 Advanced Molecular Biology
An in-depth study of the molecular mechanisms governing the replication, recombination, transcription, and translation of genetic material. Emphasis is placed on experimental approaches that have led to our understanding of these fundamental processes. 4 credits

EBS 586/686 Molecular Genetics of Development
A focused study of selected topics examining the regulation of gene expression during cellular differentiation. Emphasis is placed on the molecular nature of cell-to-cell interactions and the genetic control of complex cellular responses to developmental and environmental stimuli. 4 credits

EBS 587/687 Molecular Cell Biology
The techniques of molecular biology have created an explosion in knowledge of cell structure and function. This course examines the following topics: cellular organization, cell signaling, cell differentiation, cell evolution. Knowledge of the cell is obtained through combining core readings and lectures with student-led discussions of primary research papers. 4 credits

EBS 590/690 Environmental Microbiology
Introduction to environmental microbiology, with emphasis on the role of microbes in the environment and in remediation processes. Microbes and their interaction and activities in soil and aquatic environments will be discussed, as well as elemental cycling as influenced by microbes. Microbially mediated transformation of organic pollutants, transformation kinetics and remediation technologies will be considered. In 2003-2004, may be offered in combination with EBS 593/693. 4 credits

EBS 593/693 Biodegradation and Bioremediation
A process-oriented survey of microbially mediated transformations of organic pollutants. Transformations occurring in the natural environment as well as in remediation technologies are considered. Emphasis is on the pollutant properties, microbiological factors, and medium characteristics that determine the pathways and kinetics of biodegradation. Recommended preparation: EBS 590/690. 4 credits

EBS 595/695 Principles of Toxicology and Risk Assessment
This course applies toxicological principles to both human and ecological risk assessments. The principles and methodologies for risk assessments are presented within a regulatory context. Topics include hazard identification, exposure assessment, dose-response relationships, deterministic and probabilistic risk assessments, responses of various receptors to different contaminants, and environmental management decisions. 3 credits

EBS 596/696 Current Topics in Proteomics
Proteomics is a new area of molecular biology which aims to identify and map the total protein complement of a genome. It expands the scope of biological investigation from studying single proteins to systematically studying all proteins. Proteomics has broad applications in disease diagnosis, drug discovery, and agriculture. The key technologies used in proteomics are 2-dimensional gel electrophoresis, mass spectrometry (ESI-MS, MALDI-TOF), imaging, and database. This course will focus on electropheresis, mass spectrometry, and applications, using lectures, student seminars, and literature readings. 3 credits

EBS 601 Ph.D. Prequalifying Research
Research toward the dissertation for the Ph.D. degree before completing the comprehensive examinations. Variable and repetitive credit

EBS 603 Ph.D. Dissertation Research
Research toward the dissertation for the Ph.D. degree after completing the comprehensive examinations. Variable and repetitive credit

ELECTRICAL ENGINEERING
EE 501 M.S. Thesis Project Research
Supervised project research for master’s students who are not pursuing a thesis. A student’s academic department may have additional requirements or restrictions. Please contact your academic department for further details. Variable and repetitive credit

EE 502/602 Independent Study
Independent study allows a student to work one-on-one with a faculty member on selected topic(s) of interest. Registering for independent study requires pre-approval from the faculty member and the student’s academic department. Each department may have additional requirements or restrictions. Please contact your academic department for further details. For letter grade only. Variable and repetitive credit

EE 503 M.S. Thesis Research
Research toward the thesis for the M.S. degree. Variable and repetitive credit.
EE 504/604 Professional Internship
Professional internship credits provide students an opportunity to earn credit for relevant work experience in industry. Students gain valuable industrial experience that allows them to both apply the knowledge gained in the classroom and prepare for careers following graduation. Students on F-1 or J-1 visas must obtain prior written approval for internships from OGI's Office of International Students and Scholars before enrolling. Enrollment requires a faculty advisor and is limited by the number of internship opportunities available.
Variable and repetitive credit

EE 506/606 Special Topics
Special topics courses are offered in areas of particular relevance to the research interests of faculty or in response to industry needs. Special Topic courses are subject to change and are offered intermittently. Special topics classes will be listed in online class schedule when offered.
Variable and repetitive credit.

EE 528/639 Computer-Aided Analysis of Circuits
This course covers the algorithms and techniques for formulation and solution of circuit equations for large-scale VLSI circuits. Topics include equation formulation, linear AC and DC networks, linear transient networks, and stability analysis. Solution of nonlinear DC and transient problems. Frequency domain (AWE) techniques for VLSI interconnections, Sensitivity analysis, harmonic balance, circuit optimization, and statistical design. The implementation of device models in circuit simulators and convergence issues is covered. Assignments stress computer-aided implementation techniques and use of simulators such as PSpice.
4 credits

EE 546/646 Design of Digital Communication Circuits
Digital communications concepts including transmission, media, encoding, and synchronization. Review of BJT and CMOS circuit design and analysis. Amplifiers, filters, amplitude control, equalization. Phase locked loops, clock and data recovery. Transmitter and receiver design. Networks. Project: complete design of a serial optical link. 4 credits

EE 550/650 Introduction to Electronics and Instrumentation
Review of fundamental electronics components and design: passive components, RC circuits, power supplies, bipolar and JFET transistor circuits, basic op amp circuits, RC circuits, frequency domain and time domain response, basic digital logic components. Introduction to PSpice circuit simulation. Practical advice on component selection and circuit design. Equipment and circuit demonstrations in class. Weekly homework includes circuit analysis and gradually more complicated PSpice circuit simulation problems. The course material continues in the following term with EE551/EE561 - Advanced Electronics and Instrumentation. 4 credits

EE 551/651 Advanced Electronics and Instrumentation
Builds on the introductory concepts from EE550/651. Feedback theory, op amp limitations, precision op amp circuits. Noise, interference, grounding and shielding, low-noise techniques. Op amp circuit design and noise calculation. Analog to digital and digital to analog converters, sampling theory. Phase-locked loops, lock-in amplifiers. Practical advice on component selection and circuit design. Equipment and circuit demonstrations in class. Homework includes PSpice circuit simulation problems and a final design project. 4 credits

EE 561/661 Analog Integrated Circuit Design

EE 562/662 Digital Integrated Circuit Design
Design techniques for digital integrated circuits. Silicon bipolar and MOS digital integrated circuit design. Technology overview, device structures, modeling. Standard logic families. NMOS and CMOS logic design. Regenerative circuits and memory. Design project. 4 credits

EE 563/663 Analog CMOS Integrated Circuit Design
Design techniques for CMOS analog integrated circuits. Technology overview and models. Single-stage amplifiers, current sources, biasing, active loads, class AB output stages. Low-voltage design, bandgap references, operational amplifiers, frequency response, compensation. Design project. 4 credits

EE 564/664 High Speed Interconnect Design
Analysis, design, and measurement of digital interchip interconnects operating at multi-gigabits per second. Topics include: transmission line analysis, timing analysis, measurement equipment and techniques, lossy and coupled transmission lines, frequency domain analysis, differential signaling, equalization, modulation techniques, and design methodology. A design/research project is used to give students practical insight into high-speed differential signaling challenges. 4 credits

EE 565/665 Introduction to Wireless Integrated Circuit Design
Analog integrated circuit design for wireless communications. Transistor models, biasing, distortion, matching networks, noise modeling, low noise amplifiers, mixers, power amplifiers. Design project. 4 credits

EE 570/670 Advanced Logic Design
This course constitutes an introduction to the design and implementation of computer logic. Basic principles of discrete logic will be presented, including Boolean algebra, finite-state machine design, logic minimization and optimization using both hand-compiled (Karnaugh maps) and EDA tool-based techniques. Students will apply logic design techniques to PLD (Programmable Logic Devices) and FPGA (Field Programmable Gate Array) devices. In addition, students will learn the basics of Verilog hardware description language. The last part of the course will include a Verilog design project using the ModelSim logic simulator. This course or its equivalent is a suggested prerequisite to all other Computer Engineering (EE) Design courses. 4 credits

EE 571/671 System On a Chip (SOC) Design with Programmable Logic
Programmable logic, such as FPGA and PLD devices, has become a major part of digital design. Recent advances in semiconductor technology have made it possible to implement an entire system on a single chip. This course will discuss tools and techniques for design, validation and implementing System-on-Chip (SoC) designs using programmable logic. Designs are first expressed in Verilog hardware description language (HDL), simulated to verify design correctness, then synthesized to logic primitives, and finally placed and routed into a programmable logic device. The course has a project orientation - students will take designs from concept to HDL description and validation through synthesis and then to programmable device implementation. Industrial EDA tools will be used. Suggested prerequisites: EE570/670 or consent of instructor. 4 credits

EE 572/672 Digital Systems Timing and Test
This course focuses on timing and design-for-test topics in FPGA and ASIC design and implementation. The course uses industrial EDA tools. Topics covered include fundamentals of digital system timing, multi-clock design issues such as synchronization and clock domain boundary crossing, metastability and synchronization failure, timing-driven logic synthesis, static timing analysis, skew and jitter analysis, clock distribution, phase- and delay-locked loops, faults in digital systems, scan testing and automated test pattern generation. Suggested prerequisites: EE 571/671 or consent of instructor. 4 credits

EE 573/673 Computer Organization and Design
Basic computer organization: Memory hierarchy, including caches, pipelining, computer arithmetic, number representation, floating point arithmetic processors, controllers, input/output, buses, DMA. Data formats, addressing modes, instruction sets, and microcode. This course bridges the gap between the Computer Engineering and Design courses and CSE 521/621 Introduction to Computer Architecture. EE 570/670 is recommended prior to, or taken concurrently with, this course. 4 credits

EE 574/674 CMOS Digital VLSI Design I
An introduction to CMOS digital IC design covers basic MOS transistor theory; operation of basic CMOS inverter; noise margins; switch level modeling of MOS devices; capacitive characteristics of MOS devices; introduction to device fabrication, design rules and layout issues; power consumption; gate design/transistor sizing;
pass transistors and complimentary pass transistor logic; dynamic domino and precharge/discharge circuits; memory element design (RAM/ROM/latch-flops) and subsystem design (adders, multipliers, etc.). An understanding of basic digital design concepts is assumed. Lab exercises use industry-standard design tools. Laboratories include circuit validation and characterization. Suggested prerequisite: EE 570/670. 4 credits

EE 575/675 CMOS Digital VLSI Design II
Concentration on advanced digital VLSI circuit design techniques. Architecture and micro-architecture of VLSI components, clocking schemes, input/output circuits, and special functional blocks such as random access memories, read only memories and programmable logic arrays. The course covers design tradeoffs, especially considering cost, power and performance. The course devotes a considerable amount of time to layout, parasitics and performance verification. Introduction to design and verification tools with hands-on experience. Suggested prerequisites: EE 574/674, familiarity with MOS transistor operation; computer architecture and organization; logic design.
4 credits

EE 572/677 Applied Hardware Verification
This course is application-oriented and covers practical aspects of functional hardware verification for complex ASIC and FPGA designs. It introduces the student to a variety of state-of-the art hardware design verification methods, beginning with traditional functional simulation, then moving on to assertion-based verification methodology and concluding with a subset of formal verification techniques. Topics covered include functional simulation, coverage metrics, testbench design and automation, event- and assertion-based verification, property specification language, and formal methods including model checking and logical equivalence checking. Students will do functional simulation, assertion-based, and formal property specification lab exercises using the ModelSim digital simulator. Suggested prerequisite: EE 570/670 or consent of instructor. 4 credits

EE 580/680 Signals and Linear Systems
This course provides a comprehensive treatment of signals, linear systems, and their interactions at a rigorous introductory level. The essential mathematical tools for analyzing continuous- and discrete-time signals, such as Fourier, Laplace, and Z-Transforms, are reviewed. Analytical techniques for studying linear systems using convolution and state-space representations are introduced. The course will develop a general framework for time-varying linear systems, however, special emphasis will be placed on linear time-invariant systems. The concepts of canonical realizations, equivalent systems, canonical transformations and decompositions, solutions of state equations, Lyapunov stability, controllability, observability will be introduced. State feedback and observer design and the Kalman filter will be visited. 3 credits

EE 582/682 Introduction to Digital Signal Processing
The representation and processing of signals and systems in the discrete or digital domain is the preferred mode in today’s computer and information driven technologies. DSP provides the core building block from cell phones to modems, HDTV to video conferencing, or from speech recognition to MP3 audio. This course covers the fundamental concepts and mathematics including representation and analysis of discrete time signals and systems, Z-Transforms, Discrete-Time Fourier Transform (DTFT), and the Discrete Fourier Transform (DFT), sampling and windowing techniques pertaining to discrete time processing of continuous signals, analysis and design of recursive (IIR) and nonrecursive (FIR) digital filters, and applications of the Fast Fourier Transform (FFT) to convolution, spectral analysis, and audio processing. Suggested prerequisite: EE 581/681 or equivalent. 3 credits

EE 584/684 Introduction to Image Processing
This course covers basic image processing principles and techniques with a brief introduction to machine vision. Students acquire theoretical and working knowledge of image processing approaches including image representation, transform methods, image filtering, multi resolution representation, edge detection, texture characterization, and motion analysis. This course demonstrates application of these methods to image enhancement, image restoration, and image compression, with emphasis on image quality metrics based on human visual perception. Selected areas in machine vision include image segmentation, elementary techniques in pattern recognition, and object representation. Numerous examples show how to apply these techniques. Suggested prerequisite: EE 582/682. 3 credits

EE 585/685 Introduction to Digital Video Processing
This course introduces digital video processing for multimedia systems. It begins with video capture, image formation, analog and digital video signals and standards, and spatio-temporal sampling. Subsequent topics include motion estimation, segmentation and tracking, video filtering and video standards conversion. Students are familiarized with video compression techniques and standards (JPEG, MPEG2, H.261, H.263), and model-based video quality estimation. Students will gain working knowledge of these video techniques through class projects. Familiarity with digital signal processing and transform methods is desirable. Suggested prerequisite: EE 584/684. 3 credits

EE 586/686 Adaptive and Statistical Signal Processing
The field of adaptive filters and systems constitutes an important part of statistical signal processing. An adaptive system alters or adjusts its defining parameters in such a way that it improves performance through contact with the environment. Adaptive filters are currently applied in such diverse fields as communications, control, radar, seismology, and biomedical electronics. This course will cover the theory and applications of adaptive linear systems. Topics include Wiener filters, least squares, steepest descent, LMS, RLS, Newton’s method, FIR and IIR adaptive structures, and Kalman filters. Applications covered include noise canceling, signal enhancement, adaptive control, adaptive beam-forming, system identification, and adaptive equalization. The theory also lays the foundation for study in nonlinear signal processing with neural networks and will be introduced in the later half of the class. This course should be of interest to electrical and computer engineers specializing in signal processing and the information sciences. This course should also be taken as background for additional classes offered in artificial neural networks, connectionist models, and machine learning. Suggested prerequisites: EE 582/682 plus an undergraduate level course in probability and statistics. 3 credits

EE 587/687 Data and Signal Compression
The need for signal and data compression is ubiquitous in image, video and speech processing, finance and computational science. Where data stores become very large (e.g. video, finance, earth science), the need is not met by simple lossless file compression schemes, and we must turn to sophisticated coding techniques. This course addresses both the theoretical basis and practical algorithms for data and signal compression. Topics include lossless entropy-based coding, including Huffman and Lempel-Ziv; and lossy compression techniques including scalar quantizers, transform coding (Karhunen-Loeve, DCT and nonlinear transform codes), predictive coding, vector quantization, adaptive codes and wavelets. The relation between compression schemes and probabilistic data modeling is emphasized in conjunction with each technique. Application to speech, image and video coding are discussed. Students will have the opportunity to design compression schemes for such diverse applications as earth science data, finance, speech or video, depending on their interests. Suggested pre-requisites: Undergraduate calculus, introductory probability and statistics, some programming experience. 3 credits

EE 588/688 Introduction to Biomedical Imaging
This course introduces imaging and analysis methods in medicine and biology. It is intended for students and researchers in biomedical engineering, computer and electrical engineering, physics and other engineering disciplines as well as medical professionals and students who would like to attain a basic understanding of medical imaging. The course is intended to provide the basic understanding of both the image formation and relevant image processing techniques. The course will introduce the physics and phenomenology of image formation for a variety of image modalities that include X-ray, computer tomography (CT), magnetic resonance imaging (MRI), nuclear imaging (PET, SPECT) and ultra sound. Subsequently, students will be introduced to the techniques for image representation, processing and analysis. Specific topics include image reconstruction, image enhancement, segmentation, registration,
characterization, pattern recognition interpretation and visualization. The course will also briefly address issues related to image-based diagnosis, intervention and therapy. This course includes weekly lectures, home work, journal article review sessions and a final project. 3 credits

EE 589/689 Foundations of Computer Vision
This course provides an overview of computer vision. Computer vision deals with the problem of recovering information about the world from one or more images. This course covers the basic problems and techniques of computer vision, including the process of image formation (lighting and camera models), multiview geometry (stereo, affine and projective reconstruction), robust estimation, probabilistic models, segmentation, tracking and object recognition. Although the course will be a general survey, sufficient detail will be given for students to be able to build useful applications. Particular mention will be made of health-related applications such as medical image segmentation, image retrieval in digital libraries, or unobtrusive patient monitoring. 3 credits

EE 593/693 Analytical Techniques in Statistical Signal Processing and Communications
Development of the mathematical techniques needed to analyze systems involving random variables and/or stochastic processes with particular application to communications and instrumentation. Topics include Bayes Theorem (discrete and continuous forms), Tchebycheff inequality, Chernoff Bound, Central Limit Theorem, stationary processes and linear systems, mean square estimation, Poisson process, Gaussian process, Markoff process, and series representations. MATLAB and the MATLAB Statistics Tool Box are used in this course. 3 credits

EE 601 Prequalifying Ph.D. Research
Supervised research participation. Pre-qualifying Ph.D. research prior to passing qualifying examination. Variable and repetitive credit

EE 603 Ph.D. Dissertation Research
Research toward the dissertation for the Ph.D. degree. Variable and repetitive credit

GENERAL EDUCATION
GEN 515/615 Scientific Proposal Writing
Scientific Proposal Writing focuses on how to write a thesis proposal or a grant application, using an NIH grant application as the vehicle. All course assignments are geared toward writing sections of the thesis proposal (grant application). By the end of the course, each student will be expected to produce a draft of his or her thesis proposal or a grant application, modeled after an NIH grant application and based on the students own thesis research plan or ongoing research. Prior to enrolling, students will need to have completed sufficient preliminary research to have preliminary data suitable for their proposals; they also need to be far enough along in their studies to be ready to design their research plan. The class is not open to auditors. Prerequisites: Passing score on a Scientific Writing Diagnostic and instructor approval. 3 credits

GEN 569/669 Scholarship Skills
Scientific results have little value if they are not communicated clearly or are disconnected from prior work in a field. This course teaches students to research, write, present and review effectively for the computer sciences. It emphasizes learning by doing, and students have frequent writing and presentation assignments. Students learn how to locate and organize background materials, how to write clearly about technical topics, how to organize Web content, the structure and stylistic conventions of scientific documents (such as conference abstracts, journal papers, theses and proposals), how to prepare and deliver short and long presentations, the refereeing process, and how to prepare and respond to a review. This course is required for Ph.D. students and strongly recommended for master’s students, especially those pursuing the thesis option. It also is useful for professionals who must write or speak to a technical audience. 3 credits

APPLIED MATHEMATICS
MATH 511/611 Introduction to Discrete Numerical Methods
This course provides an introduction to discrete numerical methods. Lectures cover the theory and application of methods for the numerical solution of initial-value, boundary-value and mixed initial boundary-value problems by finite differences, weighted residuals, numerical integration and finite elements. Prerequisite: Calculus. 3 credits

MATH 519/619 Engineering Optimization
This course introduces advanced numerical optimization methods for quantitative work in science and engineering. The course will cover important traditional methods for constrained and unconstrained multivariate optimization, including line search methods and gradient-based techniques, as well as linear, quadratic and dynamic programming. In addition, more heuristic techniques such as genetic algorithms, differential evolution and simulated annealing will also be presented. The primary programming tool for this course is Matlab. Some knowledge of linear algebra and multivariate calculus is required, as is a basic grasp of probability and statistics. 3 credits

MATH 530/630 Probability and Statistical Inference for Scientists and Engineers
This course will introduce fundamental concepts underlying statistical data display, analysis, inference and statistical decision making. The topics include presentation and description of data, basic concepts of probability, Bayes theorem, discrete and continuous probability distributions, estimation, sampling distributions, classical tests of hypotheses on means, variances and proportions, maximum likelihood estimation, Bayesian inference and estimation, linear models, examples of nonlinear models and introduction to simple experimental designs. One of the key notions underlying this course is the role of mathematical modeling in science and engineering with a particular focus on the need for an understanding of variability and uncertainty. Examples are chosen from a wide range of engineering, clinical and social domains. Prerequisites: Applied Mathematics. 3 credits

MANAGEMENT IN SCIENCE AND TECHNOLOGY
MST 502 Independent Study
Independent study allows a student to work one-on-one with a faculty member on selected topic(s) of interest. Registering for independent study requires pre-approval from the faculty member and the student’s academic department. For letter grade only. Variable and repetitive credit

MST 506 Special Topics
Special topics courses are offered in areas of particular relevance to the research interests of faculty or in response to industry needs. Special Topic courses are subject to change and are offered intermittently. Special topics classes will be listed in the online class schedule when offered. Variable and repetitive credit

MST 507HC Seminar for Healthcare Management
A Healthcare Management student participation seminar on a topical paper or product. 2 credits

MST 509 Commercialization Practicum
This hands-on practicum focuses on commercializing emerging technologies. Students learn the entrepreneurial development skills necessary to move a new technology from “mind to market.” Student teams, working with emerging technologies held by OHSU, produce assessments and plans for bringing a new technology to market. Teams determine the commercial viability of a product by looking at the market and business channel options as well as the technical feasibility. Students gain an understanding of strategic considerations in the product commercialization process: how to determine market viability and technology and market timelines, application of intellectual property issues in the product commercialization process, and determination of how to reach the customer. M.S. in Management students may be able to extend work from this practicum into their MST 550 Capstone project. 4 credits

MST 510 The Global Environment of Technology Business
This course focuses on how companies choose, develop and/or acquire the technologies that they use to design, manufacture, deliver and support profitable products. Students look at these practices from three different (but related) perspectives, namely the R&D manager, the product line manager, and the vice president of marketing. The course examines the issues in managing technology
throughout its lifecycle, from research and development, through product development, and on into the marketplace. Technologies of interest span electronics, information technology, biosciences, materials, energy and environment. The focus is on today’s “emerging technology” environment of rapid innovation, short time cycles and rapid price reductions. 3 credits

**MST 511 Quality Management**
This course is about managing quality in today’s competitive environment. The focus is on the issues that quality managers face and the principles, strategies, methods, and tools that might be used to build an effective quality system. The class examines how management systems impact the delivery of quality, and considers the roles of process management and quality systems for building and sustaining quality. The emphasis of this class is on management practice rather than the technical or engineering attributes of quality. 3 credits

**MST 512 Project Management**
This course briefly reviews essential tools of traditional project management, followed by an examination of advanced concepts and techniques, including politics, communications, customer satisfaction, dealing with change, managing complexity, team-based solutions, managing managers and dealing with risk. The traditional tools of project management, such as CPM and PERT, are examined in the context of these much more critical issues that determine the success or failure of almost all technology projects. Since effective communication is so crucial to project management, the course includes sessions of instruction and coaching on effective presentation skills. 4 credits

**MST 513 Operations Management and Practices**
This course introduces the study of business process management in the operation of a firm. Students learn systems thinking and systems analysis skills with an emphasis on the understanding of current process performance as well as learning practices to enable higher levels of performance. Given the increasing trend toward contracting out many operational functions, the course also introduces key concepts of value chain management. The course instills two distinct perspectives: that of a process management consultant equipped with the right skills to help their business become more competitive, and that of a senior operations executive who needs to be knowledgeable about how their organization works. 3 credits

**MST 515 Supply Chain Management**
This course focuses on the strategic aspects of supply chain management. Supply chain management is the management of processes across complex networks of companies that while independent are in reality interdependent. Therefore, the ability of a company to generate high profits in an uncertain economy is often a direct result of the effectiveness of its supply chain. Supply chain management is a system approach to managing the entire flow of information, materials, products and funds to and from suppliers and end-customers. 3 credits

**MST 516 Global Logistics and Financial Management**
This course emphasizes operations and logistics in firms that source, produce, distribute and market in multiple nations. The management of logistics in such firms differs from its domestic counterpart along several key dimensions. First, the company must be able to identify and analyze factors that differ across nations and that influence the effectiveness of the logistics function. In addition, because of the distances involved, transportation and distribution are of greater significance. Finally, these geographically dispersed facilities and markets must be integrated and managed to enhance the strategy of the business unit. Therefore, some sessions will focus on cross-national decisions and others on managing across nations. This course is built on a robust financial foundation to help students develop analytical skills required for managers in companies committed to global markets doing business across borders. 3 credits

**MST 517 Supply Chain Management: Advanced Modeling**
This course introduces optimization in supply chain modeling. The emphasis is mainly on large-scale real-world supply chain distribution network design. The major skills taught are problem definition, model formulation, and solution analysis. Students use commercial software such as SAILS and GSCM for large mixed-integer programming, and GAMS for hands-on mathematical modeling. Other topics of the course focus on how to manage financial uncertainty under market chaos using real options methodology with Crystal Ball Monte Carlo-based software. 3 credits

**MST 520 Becoming an Effective Manager**
This course develops participants’ ability to understand and influence human behavior within technology-intensive organizations. Students learn to manage themselves, manage one-on-one relationships at work, manage their careers, and manage teams, all using ethical approaches to building coalitions and influencing others without formal authority. A major emphasis in the course is the practice of “reframing” — the ability to rethink and re-conceptualize a situation so as to widen one’s perspective and available responses. Reframing is an important skill for managing people and projects in fast-changing organizations that are creating or using new technologies. Participants learn and practice setting and managing agendas (while juggling multiple demands), building and sustaining networks (while satisfying various stakeholders), and taking productive, ethical action (while honoring the values and culture of the organization). 4 credits

**MST 521 Managing People in Organizations**
This course focuses on the professional management of people, including the fundamentals of recruiting, hiring, motivating, rewarding and appraising workers. The course focuses on how human resource (HR) management can create value and deliver results. Participants will examine the relationship between an organization’s HR practices and the organization’s effectiveness and competitive success. HR systems must be designed to fit each organization and group of people; all managers must know and practice good HR management for the organization to be successful. After completing the course, students will have mastered a variety of best practices for managing people at work. 3 credits

**MST 522 Influencing Change in Organizations**
This course focuses on designing effective organizations and managing change in organizations in which engineering, manufacturing, and/or scientific technologies are critical. Tools for assessment and redesign of organizations are emphasized. The course pays special attention to organizing for lateral coordination and integration, as this is a required capability in technology-intensive organizations. Topics also include: change methodology; roles in a change initiative; competencies and mind-sets required to effectively lead change; and the impact of change on people and organizations. Students are encouraged to design their own organizational change using a combination of the frameworks. Taking MST 520 first is recommended. 3 credits

**MST 523 New Product Development**
This course is aimed at managing innovation and creativity while at the same time achieving reliable robust products that hit market objectives aligned with the company’s business strategy. Learning how to bring new products to market that hit pricing/cost targets, on a predictable competitive launch date, with winning performance criteria, is the primary goal for this class. By the end of the course, students will be able to put together a product concept definition, carry out a pro forma financial analysis, and produce a product specification. Additional topics include identifying and managing the technological and programmatic risks associated with a new product, and understanding the trade-off between cycle time and product quality risks. 4 credits

**MST 525 Managing Creativity and Innovation**
This course will enable students to understand the nature and context of creativity and innovation and the value of new business products and services. Students will apply techniques designed to stimulate creativity in problem-solving and idea generation, to the development of a creative climate vital to knowledge-sharing and the management of innovation. 4 credits

**MST 530 Strategic Management and Planning**
This course focuses on the analysis of fast-changing competitive environments and on the decision-making process leading to the formulation and
implementation of strategy. The class explores using
time, knowledge, and technology as competitive advantages, managing strategic change, and
developing strategic plans for a future that cannot be known with certainty. Several different models for strategy formulation such as game theory, portfolio analysis, the "Five-Forces", and "Competing on the Edge" will be examined. As the ultimate test of strategy in the business world is running a company, class teams will play a computer simulation of operating a multi-product business in a dynamic, competitive environment. Prerequisites: MST 572, MST 573, MST 520 or instructor permission. 4 credits

MST 531 Software Commercialization
This course investigates the rapidly changing software industry, and how to grow and run a commercial software company. The course provides real-world perspective on the current issues involved in creating and commercializing software. Because the business models for hardware and software companies are quite different, the course focuses on the special problems of marketing, entrepreneurship, globalization, and alliances experienced by software firms. Special attention is given to the creation of value, standardization, and competitive strategy. One class project will probe issues and current trends in the software industry, and another will conduct a strategic assessment of a selected software company. 3 credits

MST 540 International Management in Science and Technology
Topics in this course include trends in the conduct of international business, the international business environment, the operation of multinational enterprises, international technology transfer, and the special considerations associated with managing on the international level. The course is constructed to give students grounding in both theoretical and hands-on aspects of international business. Course readings and lectures will focus on international trade theory, history and trends. Classroom discussions involve problem-solving exercises in which students develop skills for dealing with real world problems in international management. The group international management projects give students an opportunity to work as members of a team to accomplish international business objectives. 3 credits

MST 541 Leadership and Communication Skills
Effective interpersonal communication is the core competency from which we build the skills of personal influence, coaching, conflict resolution, personal awareness, and leadership. This course helps students develop interpersonal communication and negotiation skills for effective leadership. The focus is on personal skill building through effectively influencing in-class working groups. The course explores six leadership styles to discover where and when each is most effective. Students discover and assess their negotiation skills based on five standard negotiation styles. Personal reflection and learning are required for maximum skill development. 3 credits

MST 542 Business Ethics and Corporate Social Responsibility
This course focuses on ethical dilemmas, social issues and responsibilities, and government regulations and influences. First, the course examines different frameworks for individual decision making in an organizational setting. Next, the impact of organizational policies and practices, and the words and actions of managers on the behavior of individuals within those organizations is examined. Finally, the course focuses on the relationships between organizations and the societies in which they operate, examining the perspectives of multiple stakeholders including government regulators, community representatives, customers, employees, managers, and stockholders. 3 credits

MST 544 Strategic Alliances
Alliances have become an essential strategic element in growing a business. This course studies the structure of various types of alliances, and go into detail about best practices (what works) as well as unsuccessful practices (what doesn't work). Guest speakers from industry share current examples of alliance experience. The class looks at a variety of companies as well as industries and geographies in order to understand the key issues in alliance development from several perspectives. The overall goal of the course is for the student to understand how an alliance fits into overall strategy, different types and characteristics of alliances, and best practices in the planning, selection, negotiation, and operation of alliances. 3 credits

MST 549 Applied Business Forecasting
This web-based course emphasizes generating and implementing business forecasts. It is designed for students who want to know how forecasts are actually developed and utilized, emphasizing modern statistical methods that are widely used to generate business forecasts. Specific applications to business include forecasting sales, production, inventory, macroeconomic factors such as interest rates and exchange rates, and other aspects of both short- and long-term business planning. Topics include a statistical review, data considerations, model selection, moving averages and exponential smoothing, regression analysis, time-series decomposition, Box-Jenkins (ARIMA) models, optimal forecast combination, and forecast implementation. Anybody seeking to enhance his or her understanding of business forecasting from an applied perspective would benefit from taking this course. Knowledge of basic statistics and regression analysis is highly recommended, but not required. 3 credits

MST 550/551 Capstone Project: Business Plan
Entrepreneurship is, by its very nature, an integrative exercise. When designing and building companies, small teams must holistically integrate many discrete business skills in a very fluid, chaotic environment. This course presents students with the opportunity to put all of their business skills to the test as they work with actual high technology or healthcare startups, meet veteran entrepreneurs and startup experts, and prepare and pitch business plans. Experiencing the opportunity to "bridge the gap between theory and practice" is one of the goals of this course. Students take away a methodology for identifying and analyzing entrepreneurial opportunities throughout their careers. The course emphasizes business formation from the point of view of the founders/senior executive team and explores the behaviors, talents, skills and experiences that can be acquired to prepare future senior executives. Capstone course students will plan, research, prepare and present a business plan in teams of 3 to 5 members. Presentation of the plan will be in both written and oral forms. The course is limited to matriculated degree students who are close to completion of their studies. MST 550 and MST 551 must be taken in two successive quarters. Prerequisites: MST 520, MST 571, MST 573, and instructor approval. MST 530, MST 541, MST 572, MST 574, MST 590/591, are strongly recommended prior to Capstone. 5 credits total

MST 560 The Organization, Financing, and History of Health Care Delivery in the United States
There are increasing demands for administrators and managers who understand the complexities of the healthcare field and can provide effective leadership in these organizations. Besides the specialized knowledge needed for a particular service area, or product line, each manager must understand the broader environment in which they work. This course provides a historical context for the current system: the current economic drivers, political pressures, ethical issues, and the roles of insurance and pharmaceutical companies. In addition, the course introduces students to the technological changes - both administrative and clinical - that will influence service delivery. Finally, a section of the course focuses on important issues in healthcare that influence the field at the time the course is presented. 4 credits
Motivating, and managing performance, conflict and change. In addition, aspects of the external environment that affect how people are managed in the workplace, including employment laws and regulations and labor unions will be examined. The general objective of this course is to provide the healthcare manager with current thinking, theory, and best practices for the management of people in healthcare organizations in order that s/he can be a better manager of people.

**MST 565 Managing People in Health Care Organizations**

This course focuses on the knowledge and tools needed to manage and develop a health care program, with detailed emphasis on business planning, program design, scheduling, and resource management, including human resources, capital equipment, and software infrastructure. Students gain an understanding of the basic tools of project management and how, when, and where those tools may apply to health care improvement or development projects. Upon completion of the course students will be able to establish a project plan that will permit the successful meeting of the objectives within the cost, time and available resource constraints.

**MST 566 Health Care Information Systems Management**

This course is designed to provide the knowledge and tools necessary for the management of the high technology systems, tools and products that have become such an integral part of the health delivery spectrum. Today’s health practitioner has to use technology to find medical information and use accounting systems, personnel systems, health insurance company systems, inventory systems, patient billing systems, purchasing systems, as well as input and retrieve data. This course focuses on the business of health care and how to understand, use and manage technology and systems in a medical environment. The overall goal is to give students a conceptual framework for understanding how to use technology to reduce costs and improve productivity, efficiency and effectiveness in the workplace.

**MST 567 Health Care Technology — New Medical Advances**

Highlighting the role of technology and its influence on treatment and health care delivery in the US, this course includes the role of medical technology suppliers in shaping delivery as well as decision-making and strategy for acquisition of new technology.

**MST 568 New Trends in Health Care Delivery**

This course surveys timely topics in health care (e.g., Compliance, Patients Rights, Patient Safety, health care and he Internet, B to B Internet transactions, etc.) It is taught by a specialist in the appropriate field and focuses on practical knowledge needed by managers.

**MST 569 Health Care Marketing**

This course will expose healthcare managers to marketing fundamentals and how they are/ can be applied in healthcare organizations. Course content covers essential marketing tools and demonstration of their application in the healthcare environment through case studies and guest speakers. This course will enable students to: obtain a working knowledge of marketing fundamentals; demonstrate critical thinking skills to construct logical data-driven arguments in support of their marketing plan; and learn the nuances of healthcare marketing and the role it plays in various types of healthcare organizations. After completion students will be able to: understand the role of marketing within healthcare organizations, create and launch customer-driven products and services, and critically analyze & improve effectiveness of marketing campaigns.

**MST 570 Managerial and Financial Accounting for Science and Technology**

This course offers a survey of financial and managerial accounting, intended to provide students with a basic background of accounting principles as they are used in decision-making. Financial accounting, which is prepared for external users, represents the base of information that is generated by companies. Managerial accounting, which is prepared by and for internal users, follows different rules and principles because it is relevant to strategic decision-making: what to make or buy, which investments to make, what costs are relevant, and what the long-term direction of the company will be. Topics include the analysis of financial statements, the accounting equation and accounts, understanding cash flows and the cash flow statement, the nature of costs, and capital budgeting.

**MST 571 Financial Management for Science and Technology**

This course offers a survey of financial management concepts intended to prepare you with a basic background of modern corporate finance, the decision-making process used by financial managers of large and growing corporations, and the analytical tools to measure achievement of financial and operational objectives that result from an integrated structural approach. Topics include a review of accounting statements and cash flows, value and capital budgeting, risk and the capital asset pricing model, capital structure, leverage, dividend policy, long-term debt financing, short-term financial planning, cash and credit management, performance management and economic value added. Special topics include mergers and acquisitions, defensive tactics, and financial distress. Prerequisite: MST 571.

**MST 572 Technology Marketing: Planning for Market**

The course is designed to provide an advanced understanding of the marketing process for technology-based products and organizations, from opportunity identification to product introduction and market development. The course is articulated around three core areas: 1) how to create value for the customers, 2) how customers and value change along the technology adoption lifecycle, and 3) how to develop competitive advantage. Particular emphasis is placed on the front end of the marketing process: understanding what customers value and then developing strategies and offerings that capitalize on that knowledge. A wide range of topics is explored: how to identify value opportunities, how disruptive innovation becomes accepted by the market place, how values change along with time, how to segment and select markets, how to understand and outmaneuver competitors, how to develop a marketing strategy that creates strong competitive advantage, and last but not least, how to price products and go to market.

**MST 573 Going to Market: Delivering Value to Customers and Shareholders**

The course provides an understanding of the tools, mechanics and management of operational marketing implementation processes in high-
technology environments. Integrating lectures, class discussions, case studies, videos and individual papers and team projects, the course emphasizes developing the detailed implementation plan to bring products or services to market. The goal is to show how to turn strategy into practice by implementing the marketing plan begun in MST 573, developing the specifics of a product or service’s business model and persuasively outlining the blueprint of the business case. The course drills down into the operational specifics of pricing, promotion, sales, advertising and customer relationship management, e-business and web marketing, supply chain and distribution logistics, channel alliance building and implementation standards, metrics and controls. This course complements and completes the marketing knowledge and expertise gained through MST 573, which is a prerequisite.

OMSE 511 Managing Software Development
This course provides the knowledge and skills needed to plan, organize, lead and control software projects. Topics include planning and estimating, measuring and controlling, and achieving results in environments that include a great deal of ambiguity and contradictory information. Quantitative measures and risk management will be emphasized. Students will prepare project plans for real or hypothetical software projects, to include effort, cost and schedule estimates and risk management plans. Two years of software development experience is required for registration.

OMSE 513 Professional Communication Skills for Software Engineers
This course examines the leadership skills that make all the difference when software is developed by a team. Using individual assignments and group projects, you will learn the skills you need to make effective presentations and write persuasive proposals. You will also learn the skills you need to (1) conduct efficient meetings (keep everyone focused), (2) resolve disputes (be a good listener), (3) work successfully in a team environment, (suppress the urge to dominate), and (4) make ethical decisions when faced with conflicting goals (be true to personal values). Two years of software development experience is required for registration.

OMSE 521 Using Metrics and Models to Support Quantitative Decision Making
This course will cover how metrics can be combined with formalized decision models to support decision-making by software project leaders and managers. It provides the knowledge and skills needed to apply quantitative tools to make decisions in situations where a great deal of uncertainty exists. You will learn to recognize decision-making opportunities in the software development process, and be equipped to address them in a scientific, organized manner using all appropriate information sources. Two years of software development experience is required for registration. Foundation course work is required for registration.

OMSE 522 Modeling and Analysis of Software Systems
Abstract models are used to formalize specifications of software systems. Formalized reference specifications serve as a basis for the design of software implementations and for validating critical properties of software systems. This course provides the fundamental mathematical concepts needed to understand abstract models of software and to reason about them as well as examples of how they are applied. Two years of software development experience is required for registration. Foundation course work is required for registration.

OMSE 525 Software Quality Analysis
This course covers processes, methods and techniques for developing quality software, for assessing software quality and for maintaining quality. Course material emphasizes the tradeoffs between software cost, schedule time and quality; the integration of quality into the software development process; formal review and inspection methods; principles of testing and test planning; module design for testability; and maintaining quality while supporting existing software. Two years of software development experience is required for registration.

OMSE 532 Software Arch Domain Analysis
This course covers the principles and methods of the architectural design of complex software systems. You will study the 1) major architectural styles, 2) strengths and weaknesses of each style, 3) application of domain analysis, 4) impact of platform dependence and independence, 5) relation of software architecture to requirements, 6) domain analysis and the architectural design process, and 7) products in a real-world context. Two years of software development experience is required for registration. Foundation course work is required for registration. 3 credits

OMSE 533 Software Design Techniques
This course covers the principles of software design and a survey of design methods, techniques and tools. In-depth and hands-on study of at least one method such as object-oriented design as applied to a realistic industrial problem. It examines the effects of design decisions on the functional and nonfunctional properties of the software (e.g., ease of understanding, maintainability, reuse) and how software engineering principles are applied to make appropriate trade-offs. Students also examine the design process and products in context, including the effect of design decisions on function, quality, cost and schedule. Two years of software development experience is required for registration. Foundation course work is required for registration. CSE students may not receive credit for both CSE 519/619 and OMSE 533 because there is significant overlap in content.

OMSE 535 Software Implementation and Testing
Covers implementation and testing topics including 1) coding techniques and styles, 2) module packaging principles, 3) creating testable and maintainable code, 4) code reviews and inspections, 5) specification-based (black-box) and functional (clear box) testing and 6) test planning and administration. Two years of software development experience is required for registration. Foundation course work is required for registration. 3 credits

OMSE 551 Strategic Software Engineering
This course introduces the principles, methods, and tools for strategic software development. The tools include (1) long-term process modeling and improvement, (2) developing programs as families of systems, (3) systematic approaches to code generation, and (4) the reuse of non-code products including requirements and design. Prerequisite: All previous OMSE courses.

3 credits
OMSE 555 and OMSE 556 Software Development
Practicum I and II

The Development Practicum provides an opportunity for students to apply the knowledge and skills gained in other courses as they synthesize a solution to a significant, realistic, and practical problem. Students work to analyze a problem, develop a software concept, plan a software development effort, define requirements, and implement a solution. Students will work closely with OMSE program faculty and, where possible, reviewers from industry to apply advanced software engineering techniques to a disciplined development of a realistic product and evaluate the results. Prerequisite: All previous OMSE courses.

3 credits