Graduate Studies Faculty

« Back to Search List

Lucia Carbone, Ph.D.

Assistant Professor
Admin Unit: SOM-Behavioral Neuroscience Department
Behavioral Neuroscience
Molecular & Medical Genetics
Program in Molecular & Cellular Biosciences
Cancer Biology
Research Interests:
Chromosome evolution, particularly centromere repositioning and chromosomal rearrangements; Transposable elements; Epigenetics
Preceptor Rotations
Dr. Carbone has not indicated availability for preceptor rotations at this time.
Faculty Mentorship
Dr. Carbone has not indicated availability as a mentor at this time.

How do genomes change during evolution? To what extent are mechanisms responsible for evolutionary changes also relevant to human disease? Much is understood about fine-scale genomic changes (e.g. point mutations), but the mechanisms of large-scale chromosomal rearrangements (inversion, translocation, fission and fusion) are still unknown. Large-scale chromosome changes are key events in speciation and cancer; therefore it is critical to define how they occur, and their impact on genome architecture. 

Dr. Carbone's research has focused on chromosome evolution, particularly centromere repositioning and chromosomal rearrangements, and has recently highlighted a deep similarity between the sources of chromosome instability in species evolution and cancer. To learn about the causes of chromosomal rearrangements, she has studied chromosome evolution in gibbons, a family of primate species closely related to the great apes (human, chimpanzee, gorilla and orangutan). During the evolution of the gibbon species, there has been an exceptionally high frequency of chromosomal rearrangements, which is not explained by current models of chromosome evolution. Dr. Carbone's research has uncovered evidence that this phenomenon may have been driven by a defect in epigenetic controls

Epigenetic modifications are not reflected in the DNA sequence, but may nevertheless be heritable. Transposable Elements (TEs) often have deleterious effects on the integrity of the genome and cytosine methylation is a key epigenetic modification used by vertebrates to repress their activity. The study of chromosomal breakpoints in gibbon species revealed that TEs at the breakpoints are undermethylated when compared to their homologous human sequences. The significance of this observation is highlighted by the occurrence of a similar phenomenon in cancer cells. Cancer cell genomes are both globally hypomethylated and heavily rearranged, but no direct correlation between the two phenomena has yet been experimentally validated. 

One of the goals of the Carbone lab is to explore a mode of chromosome evolution in which the impairment of epigenetic repression of transposable elements causes a higher frequency of chromosomal rearrangements. The long-term strategy will be to use insights gleaned from species comparisons to understand the mechanism of chromosomal rearrangement in cancer, in combination with studies on cancer patients. The research in Carbone lab will benefit from innovative technologies, as massively parallel sequencing, and will contribute to the development of new tools for data production and analysis.


Lucia Carbone is an Assistant Professor in the Behavioral Neuroscience Dept. at Oregon Health and Science University (OHSU) and has a joint appointment as an Assistant Scientist in the Division of Neuroscience at the Oregon National Primate Research Center (ONPRC). She received a M.S. in Biology in 2001 and a Ph.D. in Genetics and Molecular Evolution in 2004 from the University of Bari, Italy. She was a Postdoctoral Fellow and an Assistant Staff Scientist at the Children's Hospital Oakland Research Institute (CHORI) from 2005-2010. Her postdoctoral research focused on the karyotype evolution in gibbon species (Hylobatidae) in order to uncover factors contributing to genome instability in primates. 

Key Publications

Lucia Carbone, R. Alan Harris, Alan R. Mootnick, Aleksandar Milosavljevic, David IK Martin, Mariano Rocchi, et al. (2012) Centromere remodeling in Hoolock leuconedys (Hylobatidae) by a new transposable element unique to the gibbons. Genome Biol Evol. 2012; 4(7):648-58

Carbone L, Harris RA, Vessere G, Mootnick A, Humphrey S, Rogers J. et al (2009) Evolutionary breakpoints in the gibbon suggest association between cytosine methylation and karyotype evolution. PLoS Genet 5(6): e1000538 

Carbone L, D'addabbo P, Cardone MF, Teti MG, Misceo D et al. (2009) A satellite-like sequence, representing a "clone gap" in the human genome, was likely involved in the seeding of a novel centromere in macaque. Chromosoma. 2009 Apr;118(2):269-77 

Carbone L, Vessere G, ten Hallers B, Zhu B, Osoegawa K , Mootnick A et al. (2006) A High-Resolution Map of Synteny Disruptions in Gibbon and Human Genomes. PLoS Genetics, 2006 Dec 29; 2(12):e223 

Locke DP, Segraves R, Carbone L, ArchidiaconoN, Albertson DG, et al. (2003) Large-scale variation among human and great ape genomes determined by array comparative genomic hybridization. Genome Research 13: 347-357. 

Carbone L, Ventura M, Tempesta S, Rocchi M, Archidiacono N (2002) Evolutionary history of chromosome 10 in primates. Chromosoma 111: 267-272.