Reduced IGF-1 Signaling Delays Age-Associated Proteotoxicity in Mice

Ehud Cohen,1,7 Johan F. Paulsson,2 Pablo Blinder,3 Tal Burstyn-Cohen,4 Deguo Du,2 Gabriela Estepa,1 Anthony Adame,5 Hang M. Pham,5 Martin Holzenberger,6 Jeffery W. Kelly,2 Eliezer Masliah,5 and Andrew Dillin1,*

1Howard Hughes Medical Institute, Glenn Center for Aging Research, Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
2Department of Chemistry and Molecular and Experimental Medicine and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
3Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
4Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
5Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
6INSERM and Université Pierre-et-Marie-Curie, UMRS 938, Hôpital Saint-Antoine, 75571 Paris 12, France
7Present address: Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, The Hebrew University Medical School, Ein Kerem, Jerusalem 91120, Israel
*Correspondence: dillin@salk.edu
DOI 10.1016/j.cell.2009.11.014

SUMMARY

The insulin/insulin growth factor (IGF) signaling (IIS) pathway is a key regulator of aging of worms, flies, mice, and likely humans. Delayed aging by IIS reduction protects the nematode C. elegans from toxicity associated with the aggregation of the Alzheimer’s disease-linked human peptide, Ab. We reduced IGF signaling in Alzheimer’s model mice and discovered that these animals are protected from Alzheimer’s-like disease symptoms, including reduced behavioral impairment, neuroinflammation, and neuronal loss. This protection is correlated with the hyperaggregation of Ab leading to tightly packed, ordered plaques, suggesting that one aspect of the protection conferred by reduced IGF signaling is the sequestration of soluble Ab oligomers into dense aggregates of lower toxicity. These findings indicate that the IGF signaling-regulated mechanism that protects from Ab toxicity is conserved from worms to mammals and point to the modulation of this signaling pathway as a promising strategy for the development of Alzheimer’s disease therapy.

INTRODUCTION

Most cases of Alzheimer’s disease (AD) exhibit sporadic onset during the seventh decade of life or later, whereas the fewer mutation-linked, familial cases typically manifest during the fifth decade. These temporal features, common to numerous neurodegenerative diseases, define aging as the major risk factor for the development of these maladies (Amaducci and Tesco, 1994). The insulin/insulin-like growth factor (IGF) signaling (IIS) pathway regulates stress resistance, aging and is a life span determinant. IIS reduction results in stress-resistant, long-lived worms (Kenyon et al., 1993), flies (Tatar et al., 2001), and mice (Blüher et al., 2003; Holzenberger et al., 2003) and correlates with increased longevity of humans (Flachsbart et al., 2009; Suh et al., 2008; Willcox et al., 2008). Delayed aging, by IIS reduction, protects worms from proteotoxicity associated with the aggregation of the Huntington’s disease-associated polyQ peptide (Morley et al., 2002) and the AD-linked human Ab peptide (Cohen et al., 2006). However, little is known about whether this protection from proteotoxicity is conserved from worms to mammals, and what protective mechanisms may be operating.

Ab originates from the endoproteolysis of the amyloid precursor protein (APP) (Glenner and Wong, 1984; Selkoe, 2004). The serine protease BACE (beta amyloid cleaving enzyme) cleaves APP (Farzan et al., 2000), followed by an intramembrane cleavage of the resulting fragment by presenilin1 (PS1), an active component of the γ-secretase proteolytic complex (Wolfe et al., 1999). These events release the Ab family of aggregation-prone peptides, including Ab1-40 and the highly amyloidogenic Ab1-42. Although compelling data indicate that Ab aggregation triggers AD, the mechanism leading to the development of the disease is unclear (Selkoe, 2004). Recent studies suggest that it is not fibrils, but small Ab oligomers lead to toxicity in AD model organisms (Cohen et al., 2006; Lesne et al., 2006) and to AD in humans (Haass and Selkoe, 2007; Shankar et al., 2008).

In the C. elegans Ab model (Ab worms [Link, 1995]), the protection from human Ab1-42 proteotoxicity conferred by IIS reduction is dependent upon two transcription factors, heat shock factor 1 (HSF-1), which regulates Ab disaggregation, and DAF-16 (ortholog of FOXO in mammals), which facilitates the formation of larger, less toxic Ab aggregates. Accordingly, Ab worms protected from Ab toxicity by reduced IIS accumulate more large Ab aggregates and have fewer oligomers than did their unprotected counterparts with normal IIS (Cohen et al., 2006).

Although reduced IGF signaling extends the life span of mice (Holzenberger et al., 2003), IGF-1 infusion protects from Ab toxicity (Carro et al., 2002, 2006), raising the query of whether...
IGF signaling reduction or activation protects from Aβ toxicity. To address this question, we created an AD mouse model with reduced IGF signaling by crossing a well-established AD transgenic mouse model (Jankowsky et al., 2001) with long-lived mice harboring only one Igf1r gene copy (Igf1r+/- mice) (Holzenberger et al., 2003).

RESULTS

Creation of Mice with AD Transgenes in the Context of Reduced IGF-1R Signaling

Igf1r is the mammalian ortholog of the sole worm insulin/IGF receptor daf-2 (Kimura et al., 1997). Igf1r+/- mice exhibit reduced IGF-1 signaling, are long-lived, oxidative stress resistant, and have reduced body size (Holzenberger et al., 2003). The AD mouse model expresses two AD-linked mutated transgenes, APPsw (a humanized mouse APP that contains the human Aβ peptide sequence) and human presenilin-1 A9, both driven by the mouse prion protein promoter (hereafter referred to as AD mice) (Jankowsky et al., 2001). The expression of these transgenes results in the production of human Aβ amyloid plaque formation in the brain, and slow, progressive AD-like symptoms (Jankowsky et al., 2004). The AD-like mice also exhibit age-onset behavioral impairments, analogous to other AD murine models (Reiserer et al., 2007). The AD model is less aggressive than other AD models, exhibiting appearance of Aβ plaques in the brain at 6–7 months of age (Jankowsky et al., 2004). The slow onset of AD-like symptoms allows for the perturbation of IIS to examine its role in the age onset requirements of the AD-like syndrome.

To equalize the genetic background of our mice, we first backcrossed both the AD and Igf1r+/- mouse strains with wild-type 129 females for three generations, followed by four intercrosses between the AD and Igf1r+/- mice. Crossing Igf1r+/- with the AD mice generated offspring of four genotypes (Figure 1A): The original parental genotypes, (1) heterozygous Igf1r+/- (Igf1r+/-) and (2) AD mice, which served as internal controls (AD). (3) Congenic siblings that age naturally due to two Igf1r gene copies but carrying neither of the AD transgenes. These animals served as negative internal controls for asymptomatic AD-like disease and natural IGF-1 signaling (WT). Finally, (4) mice harboring both AD transgenes and only one Igf1r gene copy served as the experimental group of focus (AD;Igf1r+/-).

Quantitative polymerase chain reaction (PCR) analysis revealed that the expression levels of the APPsw transgene were nearly identical in brains of AD and AD;Igf1r+/- mice (Figures S1A–S1E available online), indicating that IGF signaling reduction does not affect the expression of the prion protein promoter-driven transgenes. The levels of monomeric Aβ and of the C-terminal APP fragment (APP CTF) were also very similar in AD and AD;Igf1r+/- mice (Figures S1F and S1G). Similarly, reduced Igf1r signaling did not affect the endogenous s and β secretases (ADAM17 and BACE, respectively) in mouse brains of all genotypes (Figure S1H). Together these results indicate that IGF signaling reduction affected neither the transgene expression nor the levels of the endogenous APP processing enzymes or their activity. As expected, both Igf1r+/- and AD;Igf1r+/- mice were smaller compared with their littermates carrying two Igf1r copies, indicating reduced IGF-1R signaling (Figure S2A) (Holzenberger et al., 2003).

Reduced IGF-1R Signaling Reduces the Behavioral Deficits of AD Mice

Age-onset memory deficiency and impairment of orientation and locomotion are associated with Aβ production in numerous AD murine models (Jensen et al., 2005; King and Arendash, 2002; Westerman et al., 2002). We evaluated whether reduced IGF-1 signaling protects mice from Aβ-associated behavioral impairments using several behavioral assays. As an initial analysis, we used eight animals per genotype and followed their performance in the Morris water maze test at 3, 6, 9, and 12 months of age, and found the greatest differences among AD, AD;Igf1r+/- animals and their littermate controls at the 9 and 12 month time points (Figures S2B and S2C). At 16 months we observed mortality in the AD group that was not present in the AD;Igf1r+/- mice (data not shown). Thus, we refined our behavioral analysis to the 11–15 month of age using a larger cohort of animals.

We measured the learning ability of mice using a Morris water maze with a cued (visible) platform for four consecutive days. As previously reported for other AD model mice (Blanchard et al., 2008; Westerman et al., 2002), the AD mice did not exhibit a learning deficiency compared to their age-matched WT, Igf1r+/-, and AD;Igf1r+/- counterparts (Figure 1B, p > 0.05). In order to test orientation aptitude, we removed the cue from the platform and recorded the latency time required for mice to locate the submerged platform for four consecutive days. At days 2, 3, and 4 of the experiment, AD mice required a significantly (p < 0.05) longer time to find the hidden platform compared to their WT, Igf1r+/-, and AD;Igf1r+/- counterparts (Figure 1C). This indicates that, like other mouse AD models (Jensen et al., 2005; King and Arendash, 2002; Westerman et al., 2002), orientation capabilities of AD animals are impaired (swim velocities were nearly identical for all genotypes; Figure S2D). Lastly, we tested memory skills by removing the platform from the water maze and recording the number of the crosses of the previous platform location (probe trial). AD mice crossed the platform’s previous location significantly (p < 0.05) fewer times than their WT, Igf1r+/-, and most importantly AD;Igf1r+/- counterparts, indicating impaired memory. The observation that AD;Igf1r+/- animals crossed the previous platform location at similar frequencies compared to WT and Igf1r+/- animals suggests partial memory restoration (Figure 1D).

Next, we tested the effect of reduced IGF-1 signaling on the motor skills of AD model mice using a Rota-Rod assay. Much like the orientation and memory tests, AD mice performed significantly less well than their age-matched WT, Igf1r+/-, and AD;Igf1r+/- counterparts in this assay (Figure 1E, p < 0.05).

Collectively, the behavioral data revealed that AD mice have impaired orientation and memory performance as well as locomotion impairment that can be delayed by reduced IGF-1 signaling.

Reduced IGF-1R Signaling Reduces Inflammation and Neuronal Loss in AD Mice

We asked whether the appearance of biological markers associated with AD-like disease in mice was also delayed by reduced
Figure 1. Reduction of IGF Signaling Protects Mice from Aβ-Associated Behavioral Impairments

(A) Long-lived mice carrying one Igf1r copy were crossed with transgenic Alzheimer’s disease (AD) model mice harboring two AD-linked mutated genes, APPswe (containing the human Aβ sequence) and PS1ΔE9 to obtain offspring of four genotypes: (1) wild-type, harboring two Igf1r copies and no AD-linked transgenes (WT), (2) long-lived mice with one Igf1r copy and no AD-linked transgenes (Igf1r+/−), (3) AD model mice with two Igf1r copies and both AD-linked transgenes (AD), and (4) mice that harbor one Igf1r copy and both AD-linked transgenes (AD;Igf1r+/−).

(B) Latency time for reaching the cued platform significantly decreased through the acquisition sessions (p = 0.0001, F = 35.49, df = 3) in mice of all genotypes (p > 0.05, F = 1.84, df = 3, n = 8, 15, 16, 18 for AD, AD;Igf1r+/−, WT, and Igf1r+/−, respectively), suggesting no impairment of learning.

(C) Significant differences were observed among AD mice and their counterparts of the other genotypes in the submerged platform test (p = 5E-4, two-way analysis of variance [ANOVA], F = 7.71, df = 3) and across the acquisition days (p = 0.032, F = 2.97, df = 3, n = 8, 15, 16, 18 for AD, AD;Igf1r+/−, WT, and Igf1r+/−, respectively). AD mice searched for a longer period of time (p < 0.05, Fisher LSD) for the submerged platform. No difference was observed among the three other genotypes.

(D) AD;Igf1r+/− animals crossed the previous platform location significantly (p = 0.024, Kruskal-Wallis, χ² = 9.38, df = 3) more times than their AD counterparts.

(E) Mice older than the age of plaque formation of all genotypes were tested in a Rota Rod task. Animals of the different genotypes significantly differed in their performance (p < 0.01, one-way ANOVA, df = 3, F = 4.25; n = 31, 32, 29, and 28 individuals for AD, AD;Igf1r+/−, Igf1r+/−, and wild-type, respectively). AD mice performed worst among the four genotypes whereas AD;Igf1r+/− mice where partially rescued because they performed significantly better than AD animals (p < 0.05, Tuckey LSD). No statistical difference appeared between AD;Igf1r+/− animals and the two control genotypes. In all behavioral tests, 11- to 15-month-old mice were tested and age-match controlled. Error bars represent mean and standard error of the mean (± SEM).
IGF signaling. First we tested whether reactive astrocytosis, indicative of neuroinflammation, associated with AD in brains (Mancardi et al., 1983), and with Aβ aggregation in brains of AD model mice (Wirths et al., 2008), was reduced in AD;Igf1r−/− mice compared with age-matched AD mice (Figure 2I), indicating that neuroinflammation is reduced in AD;Igf1r−/− mice compared with age-matched AD mice. Interestingly, whereas the GFAP signal observed in cortices of AD mice was largely diffuse, cortical GFAP staining of AD;Igf1r−/− mice appeared to be focal (compare Figures 2C and 2D), suggesting that neuroinflammation within AD;Igf1r−/− brains is confined to smaller areas than in the brains of AD animals. Neuronal loss is another hallmark of AD in humans (Schuff et al., 1990) and AD model mice (Masliah and Rockenstein, 2000). We used direct stereological visualization and NeuN immunoreactivity, a marker of neuronal density that declines in AD mice, and found higher NeuN immunoreactivity in the cortices of 12- to 13-month-old AD;Igf1r−/− mice compared to their age-matched AD counterparts (Figure 3). This indicates that reduced IGF signaling protects from neuronal loss. Similar neuronal losses were observed in young (4–5 months of age) and in old (16–17 months) AD but not in AD;Igf1r−/− mice when compared to age-matched control genotypes (Figure S3).

Reduced synaptic density is an additional hallmark and probably causative of AD (Hamos et al., 1989). Thus, we used the synaptic marker synaptophysin to compare synaptic densities in frontal and hippocampal brain regions of 12- to 13-month-old mice of all genotypes (Hamos et al., 1989) and found significantly lower synaptic densities in both brain regions (Figures 3J and 3K, respectively) of AD animals compared with their AD;Igf1r−/− counterparts. These observations confirm that IGF signaling reduction protects mice from Aβ-associated neuronal loss.

Reduced IGF Signaling Promotes the Formation of Densely Packed Aggregates
To explore the mechanism underlying the protection toward behavioral deficiencies conferred by reduced IGF signaling, as well as the protection from inflammation and neuronal loss in mice ectopically expressing mutated AD-linked transgenes, we investigated the nature of Aβ assemblies in brains of AD and AD;Igf1r−/− mice. Immunohistochemistry (IHC) and Aβ antibodies (clone 6E10) were used to visualize Aβ plaques in brain sections of AD and AD;Igf1r−/− mice (Figure S4). Consistent with previous results (Jankowsky et al., 2004), Aβ plaques could not be detected in brains of young mice (4-5 months old). A few plaques were observed in the brains of 8- to 9-month-old animals, whereas the number of plaques increased in the brains of 12- to 13-month-old AD and AD;Igf1r−/− mice. No background staining was observed in brains of WT or Igf1r−/− mice at any age examined (Figure S4). Thus, reduced IGF signaling has no apparent effect on the onset of plaque formation. Next we used the fluorescent dye Thioflavin-S to visualize amyloid within AD and AD;Igf1r−/− brains and found nearly identical amyloid load in cortex and hippocampus regions of both genotypes (Figure 4A, panel IX). Colocalization of Thioflavin-S labeling with the signal of specific Aβ antibody [clone 82E1] confirmed the plaque specificity of Thioflavin-S; Figure S5A). Therefore, the kinetics of Aβ plaque appearance as well as the amyloid load did not appear to differ between AD and AD;Igf1r−/− animals.

Closer inspection of the Aβ plaques analyzed by IHC revealed that plaques observed in the cortices of AD;Igf1r−/− animals are smaller and more condensed than those detected in the cortices of their age-matched AD counterparts (Figure S4, 12–13 months, insets). To compare the plaque compaction in the mouse brains,
we used the highly specific Aβ antibody (clone 82E1 that recognizes processed Aβ) and measured the Aβ immunoreactive optical density (signal per area) in the different brains. Significantly higher Aβ immunoreactive optical densities were detected in brains of AD;Igf1r+/− mice than in AD brains (Figure 4B, panel IX), suggesting higher compaction of the Aβ amyloid plaques in AD;Igf1r+/− animals.

We also compared the protease sensitivity of plaques of AD and AD;Igf1r+/− animals by treating brain sections of 12- to 13-month-old mice with 10 μg/ml proteinase K prior to their labeling with Aβ antibody. A diffuse staining of Aβ plaques seen in AD brain slices compared to the AD;Igf1r+/− brain slices (Figure S5B) suggested that plaques of AD;Igf1r+/− animals are more protease resistant than those of AD mice.

To further analyze the amyloid plaque density, we used post-embedding immunoelectron microscopy, Aβ antibodies, and gold-labeled protein A. Aβ fibrils in the cortex of AD;Igf1r+/− mice appeared to be more densely compacted than those of their AD counterparts (Figures 5A and S6A). (The lack of immunoreactivity in the brain sections of WT and Igf1r+/− mice confirmed the specificity of the antibody; Figure S6B).

To quantify and compare the density of the amyloid plaques of AD and AD;Igf1r+/− mouse brains, we developed an electron microscopy (EM) image-processing algorithm that identifies the gold particles conjugated to the Aβ antibodies (Figures S6C–S6F), sets a region of interest (ROI) around each particle, and determines the median signal density within the ROI after excluding the gold particle (Figures S6G–S6I). ROIs that contain dense structures will have a lower score value due to less bright pixels and more dark pixels (i.e., lower gray-scale value).

Cortices of six 12- to 13-month-old AD mice and five AD;Igf1r+/− mice were visualized by EM and 135 images (34,087 ROIs) of AD and 101 images (26,066 ROIs) of AD;Igf1r+/− were automatically segmented and analyzed in an unbiased manner. The distributions of ROI median signal intensities indicate that plaques of AD;Igf1r+/− mice were significantly (p < 0.038) denser than those of age-matched AD counterparts (Figure 5B). The possibility that antibody accessibility to plaques of AD and
 brains differs was assessed by a second algorithm designed to measure the distance between each gold particle and its closest neighboring particle. This algorithm is based on the assumption that lower accessibility would result in sparse distribution and longer distances among the gold particles. Automatic processing of all plaque images of AD and AD;Igf1r−/− showed no difference in distances (Figure S6J, p > 0.54), indicating similar antibody accessibilities.

The results obtained using light and electron microscopy suggest that reduced IGF signaling mediates the assembly of Aβ into more condensed amyloid plaques of lower toxicity. We used an in vitro kinetic aggregation assay (Cohen et al., 2006) to assess the relative total amounts of Aβ amyloid in equal volumes of brains of AD and AD;Igf1r−/− mice. When proteinase K-treated and sonicated (fragments fibrils into a uniform size) brain homogenate is added to an Aβ1-40 aggregation reaction, the reduction in the time that it takes the aggregation reaction to reach 50% completion is proportional to the amount of Aβ amyloid fibrils in the tissue (Cohen et al., 2006) (D.D. and J.K., unpublished data). The amyloid load was assessed in 4- to 5-month-old and of 12- to 13-month-old AD and AD;Igf1r−/− mouse brain homogenates (nine animals per genotype). While no significant difference in aggregate load could be detected among brain homogenates of young animals (4-5 months old, Figure S6K), brain extracts of 12- to 13-month-old AD;Igf1r−/− mice exhibit a higher aggregate load reflected by a shorter t50 (suggesting accelerated aggregation of Aβ1-40) relative to age-matched AD animals (Figure 5C; p = 0.035). These data demonstrate that there is more amyloids in an equal volume of 12- to 13-month-old AD;Igf1r−/− brain relative to AD brain. These results are consistent with the light and electron microscopy data indicating that protected AD;Igf1r−/− animals have more densely packed Aβ aggregates than AD animals.

Reduced IGF-1 Signaling Increases High-MW Aggregates and Reduces SDS-Soluble Aggregates

The hyperaggregation of Aβ by reduced IGF-1 signaling predicts lower residual amounts of nonaggregated Aβ and/or oligomeric

Figure 4. Reduced IGF Signaling Facilitates Aβ Hyperaggregation
(A) Thioflavin-S amyloid labeling showed similar Aβ plaque burden in brains of AD (panels III and VII) and AD;Igf1r−/− animals (panels IV and VIII). Image analysis indicated that the Thioflavin-S signals are similar in brains of AD and AD;Igf1r−/− mice, but significantly different from WT and Igf1r−/− mice (panel IX). Six 12- to 13-month-old animals per genotype were analyzed.
(B) Aβ plaque signal density was measured using Aβ-specific antibody (82E1). The signal per area ratio in brains of AD;Igf1r−/− animals (panels IV and VIII) was significantly higher (panel IX, p < 0.05) compared with brains of age-matched AD animals (panels III and VII), indicating higher plaque compaction in brains of AD;Igf1r−/− mice (six mice per genotype and three sections per animal were analyzed; DG, dentate gyrus; NC, neocortex). Error bars represent mean ± SEM.
Thus, we tested whether more soluble Aβ is present in AD compared to AD;Igf1r+/− brains. We spun brain homogenates of seven AD and nine AD;Igf1r+/− 12- to 13-month-old mice to sediment highly aggregated Aβ (10,000 g for 10 min, 4°C) and quantified the lower molecular weight (MW) Aβ1-40 and Aβ1-42 levels in the soluble fractions using enzyme-linked

Figure 5. Electron Microscopy and In Vitro Kinetic Aggregation Assays Reveal Densely Packed Aβ Aggregates in the Brains of AD;Igf1r+/− Mice
(A) Electron micrographs of immunogold-labeled Aβ amyloids in the cortex of AD and AD;Igf1r+/− mouse brains at different ages. Gold-labeled amyloid and fibrillar Aβ structures can be observed in the higher magnification electron micrographs (right panels). The amyloid load similarly increased with age in both genotypes, but highly ordered, condensed amyloids were present in AD;Igf1r+/− cortices (arrows) but not in the cortices of their AD counterparts. White scale bars represent 1 μm, black bars 200 nm.

(B) Unbiased automated image processing indicates that median intensities of regions of interest (ROIs) around the gold particles labeling Aβ plaques of AD;Igf1r+/− mice (black) are significantly (p < 0.04) higher than the plaque intensities of age-matched AD animals (red), confirming the higher compaction state of Aβ plaques of AD;Igf1r+/− (135 images [34,087 ROIs] of AD and 101 images [26,066 ROIs] of AD;Igf1r+/− were collected and analyzed).

(C) Using an in vitro kinetic aggregation assay to assess fibril load, 12- to 13-month-old AD;Igf1r+/− mouse brain homogenates (blue) accelerated Thioflavin-T (ThT) monitored in vitro kinetic aggregation significantly (p = 0.035) faster than homogenates of age-matched AD brains (brown), indicating more Aβ seeding competent assemblies in AD;Igf1r+/− mouse brains. Inset: Statistical analysis of results obtained in (C). Error bars represent mean ± SEM.
immunosorbent (ELISA) assays. Aβ1-40 (Figure 6A) and Aβ1-42 (Figure 6B) levels were significantly (p < 0.001 and p < 0.005, respectively) lower in the soluble brain supernatant fractions of AD;Igf1r+/−/C0 mice compared to age-matched (12-13 month) AD animals. No such differences could be detected in the amounts of soluble Aβ1-40 among young mice (Figure S7A, p = 0.126).

**Figure 6. AD Brains Contain More Soluble Aβ Oligomers Than Do Brains of AD;Igf1r+/−/C0 Animals**

(A and B) ELISA assay detected significantly higher amounts of soluble Aβ1-40 (A) (p < 0.001) and Aβ1-42 (B) (p < 0.005) in brain homogenates of 12- to 13-month-old AD mice compared with brains of age-matched AD;Igf1r+/−/C0 animals.

(C and D) Western blot analysis reveals no detectable difference in the amount of SDS-sensitive Aβ monomers and small oligomeric assemblies between AD and AD;Igf1r+/−/C0 brain homogenates. Asterisk (*) indicates significant difference from WT or Igfr1+/−/C0 mice.

(E) Native SEC indicated that Aβ dimers were mainly associated with large structures in brains of 16- to 17-month-old AD;Igf1r+/−/C0 mice (panel iii) while more soluble in brains of age-matched AD animals (panel ii, arrowhead) (panels represent 6 AD and 6 AD;Igf1r+/−/C0 animals that were analyzed). Loading of total samples onto the gel and subsequent WB analysis using 6E10, confirmed equal protein loading onto the column (panel i). Error bars represent mean ± SEM (A, B, and D).
Next, we tested whether SDS-soluble Aβ oligomeric content and total quantities were affected by reduced IGF-1 signaling. 

Four AD and 4 AD;Igf1r<sup>+/−</sup> mouse brains of 12- to 13-month-old mice were subjected to an Aβ oligomer preparation protocol (Bar-On et al., 2006) followed by SDS-PAGE and western blot (WB) analysis. Surprisingly, the SDS-soluble Aβ oligomer content, and total quantities and amounts of APP were indistinguishable in the total brain homogenates (Figures 6C and 6D) of AD and of AD;Igf1r<sup>+/−</sup> mice (no oligomers could be detected in cytosolic fractions; Figure S7B). The difference between the oligomer analysis results and the marked difference in the pool of nonaggregated Aβ species among AD;Igf1r<sup>+/−</sup> and AD animals observed by the ELISA assays (Figures 6A and 6B) suggests that the oligomeric Aβ assemblies are SDS sensitive. To test this, we employed size-exclusion chromatography (SEC) to analyze the native composition of Aβ assemblies in the brains of AD and AD;Igf1r<sup>+/−</sup> mice. Brains of AD;Igf1r<sup>+/−</sup> and AD mice were homogenized and prepared as done for the ELISA assays to preserve macromolecular structural integrity. Equal amounts of cleared homogenates (Figure 6E, panel i) were loaded onto a size-exclusion column, and 20 fractions were collected, lyophilized, resuspended, and loaded onto SDS gels. Aβ assemblies were visualized using WB and Aβ antibody (6E10). Notably, higher MW assemblies were observed in the AD;Igf1r<sup>+/−</sup> (see red reference line) reflecting that they were larger to begin with and/or that they were more SDS resistant (Figure 6E, panel iii, fraction 3) (for size exclusion standard see Figure S7, C and D). The apparent dimer band resulting from SDS mediated denaturation of much larger aggregates is not observable in the AD;Igf1r<sup>+/−</sup> SEC fractions (Figure 6E, panel iii), but is observable in the AD mouse fractions, (Figure 6E, panel ii, fractions 5–7, open arrowhead). This proposes that in the AD;Igf1r<sup>+/−</sup> brains, Aβ fibrils are denser, more SDS resistant and more efficiently prevent the release of potentially toxic oligomeric species. Since toxicity has been previously associated with the capacity of high-MW assemblies to fragment (Shankar et al., 2008), prior correlations between the appearance of small SDS-stabilized Aβ species and neurotoxicity may reflect this. The data obtained from the microscopic analyses, ELISA and in vitro assays suggest that the conversion of oligomers into denser, higher MW, more SDS-resistant aggregates is part of the process that protects against proteotoxicity in the AD;Igf1r<sup>+/−</sup> animals.

**DISCUSSION**

By comparing behavioral and pathological aspects of Alzheimer’s-like disease in the AD and AD;Igf1r<sup>+/−</sup> mice, we found that reduced IGF-1 signaling notably protects mice from proteotoxicity associated with the expression of the AD-linked human peptide, Aβ. Light and electron microscopy, as well as in vitro kinetic aggregation, ELISA, and SEC assays, all indicate that reduced IGF-1 signaling induces the assembly of Aβ into densely packed, larger fibrillar structures late in life. The observation that the protected AD;Igf1r<sup>+/−</sup> mice form SDS stable Aβ assemblies, making it more difficult to generate presumably toxic Aβ dimers (Shankar et al., 2008), suggests that an active mechanism converts oligomers into densely packed aggregates of lower toxicity that protect the AD;Igf1r<sup>+/−</sup> mice from proteotoxicity. This hypothesis is consistent with results obtained in the Aβ worm model, where reduced insulin/IGF signaling protected worms from Aβ-associated toxicity while increasing the formation of high-MW Aβ aggregates (Cohen et al., 2006).

How can increased Aβ aggregation protect against proteotoxicity? Highly aggregated Aβ is thought to bear lower toxicity in comparison to oligomers (Haass and Selkoe, 2007). Accordingly, enhanced fibrillization can reduce Aβ toxicity in an AD-murine model (Cheng et al., 2007). Furthermore, results from long-term potentiation assays show that highly aggregated Aβ bears lower toxicity than small oligomers (Shankar et al., 2008). Intriguingly, the release of small oligomers, most notably dimers, from large Aβ assemblies (fibrils) by chemical extraction increases toxicity. In support of the hypothesis that accelerated aggregation can be protective is provided by the discoveries that the cellular chaperones HSP104 (Shorter and Lindquist, 2004) and TRIC (Behrends et al., 2006), both known to disrupt toxic protein aggregates can also mediate protection by accelerating aggregation when the concentration of the aggregating protein exceeded a threshold level. These studies raise the prospect that the creation of densely packed, large Aβ assemblies protects AD;Igf1r<sup>+/−</sup> mice from proteotoxicity by trapping and storing highly toxic small aggregate structures. If active aggregation protects from Aβ toxicity, such protective mechanism might be expected to be negatively regulated by the IGF signaling pathway. In the worm, this activity is mediated, at least in part, by the FOXO transcription factor DAF-16 (Cohen et al., 2006), which is negatively regulated by the IIS receptor DAF-2. The FOXO gene family is highly conserved in mammals, is expressed in neurons, and is required for neuronal survival under stress (Lehtinen et al., 2006), suggesting that FOXO transcription factors are also mediators of the reduced IGF signaling protective effect in mammals.

It is likely that reduced IGF signaling ameliorates Aβ proteotoxicity by mechanisms in addition to Aβ dense fibril formation. The observation that Igf1r<sup>+/−</sup> mice exhibit increased resistance to oxidative stress (Holzenberger et al., 2003) raises the possibility that reduced IGF-1 signaling enhances the neuronal counter proteotoxic capabilities by enhancing the levels of enzymes that protect against oxidative stress proposed to be involved in AD-associated brain damage (Fukui et al., 2007). This is supported by the observation that the production of reactive oxygen species is reduced in brains of Igf1r<sup>+/−</sup> mice compared with their WT counterparts following MPTP treatment known to induce a Parkinson’s disease-like phenotype (Nadjar et al., 2008). Moreover, overexpression of mitochondrial-targeted catalase promotes longevity of mice (Schriner et al., 2005). An alternative model suggests that increased neuronal resilience associated with reduced IGF signaling is promoted by enhanced DNA repair capabilities. It is reasonable to speculate that the histone deacetylase SIRT1, an aging regulator (Ghosh, 2008) that plays roles in the maintenance of genomic stability (Oberdoerfer et al., 2008) and regulates HSF1 (Westerheide et al., 2009), may also be a mediator of the reduced IGF signaling protective effect in the AD;Igf1r<sup>+/−</sup> mice. The complexity and variety of effects mediated by FOXO (Partridge and Bruning, 2008) propose that reduced IGF signaling orchestrates an array of counter proteotoxic activities including Aβ hyperaggregation,
The digestion of APP creates Aβ monomers that spontaneously aggregate to form toxic oligomers in vivo. At least two biological mechanisms can detoxify Aβ oligomers: (1) conversion of toxic oligomers into monomers (disaggregation), and (2) conversion of toxic oligomers into less toxic, larger structures (active aggregation). Within scenario 1, IGF-1 signaling normally functions to reduce protein disaggregates. Therefore, reduction of IGF-1 signaling would result in less oligomers and more monomeric forms of Aβ due to the activation of protein disaggregases. Our results are inconsistent with this scenario because we find less oligomers, but equal amounts of monomeric Aβ. Alternatively, in scenario 2, IGF-1 signaling could normally function to reduce proteolytic aggregate proteins that convert toxic species into larger, less toxic forms. Thus, reduced IGF-1 signaling elevates aggregate activity that in turn reduces the load of toxic oligomers and increases the compaction of less toxic fibrils. In support of scenario 2, we observed less soluble oligomers and highly compact amyloid plaques in AD/igf1r+/− animals. Alternatively, (3) IGF-1 signaling could promote proteotoxicity and neuroinflammation in response to toxic Aβ assemblies. Our results are also consistent with this proposed mechanism as we observed much less neuroinflammation in the brains of protected AD/igf1r−/− animals. Yet this lower inflammation rate could be directly related to the reduction of Aβ oligomers in these animals by increased aggregates. In scenario 4, reduction of toxic secondary factors, such as reactive oxygen species (ROS), might synergize with the production of toxic Aβ assemblies to promote neuronal loss. Consistent with this mechanism, igf1r−/− mice are much more resistant to oxidative damage than wild-type mice. Taken together, IGF-1 signaling could impinge at multiple steps on the path to neuronal loss and neurodegeneration in response to Aβ production and none of the interventions are mutually exclusive. Our data are most consistent with a model in which reduced IGF-1 signaling reduces the load of toxic Aβ structures, presumably dimers, which results in higher compaction of plaques, reduced neuroinflammation, and reduced neuronal loss.

counter oxidation activities, and presumably other yet to be defined mechanisms (Figure 7). Further research is required to elucidate whether mammalian FOXO family members play roles in the protective mechanism toward AD.

The Aβ hyperaggregation observed in protected AD/igf1r−/− mouse brains suggested that Aβ plaques would be visible in the cortex of these animals at younger ages compared to their unprotected AD counterparts, however, this was not evident in our analysis. This is likely due to other mechanisms of protein homeostasis being effective early in life, such as the disaggregation and degradation activity regulated by HSF-1, as observed in the worm (Cohen et al., 2006). In this view, the protective disaggregation/degradation and hyperaggregation mechanisms may be temporarily distinct. Active hyperaggregation may only be invoked once the primary disaggregation machinery can no longer effectively clear toxic Aβ species as a consequence of aging or an extrinsic stress. It will be interesting to evaluate whether one or more of the four HSF genes in the mouse are involved in protecting the brain from Aβ toxicity throughout life, and whether FOXO activity becomes prominent later in life.

There is an apparent contradiction between the data presented herein and earlier reports that IGF infusion protects rats (Carro et al., 2002) and mice (Carro et al., 2006) from Aβ proteotoxicity and that IGF-1R blockade induced neurological disease in rats (Carro et al., 2006). The presence of feedback-signaling events that respond to the sudden increase in IGF concentration by tuning down the responsiveness of the IGF signaling cascade over time could explain why IGF infusion is protective against AD-like pathology (Cohen and Dillin, 2008). This explanation is supported by many observations. For example, long-lived female human centenarians have high serum IGF-1 levels, but low IGF-1R activity, leading to reduced IGF signaling (Suh et al., 2008). Therefore, high IGF-1 levels do not necessarily correlate with increased downstream activity over a prolonged time. Additionally, AD patients have lower than normal serum insulin concentrations, but higher than normal CSF insulin levels (Craft et al., 1998). These studies raise the prospect that insulin and IGF signaling are regulated in a tissue-specific manner, and suggest that peripheral IGF infusion may lead to reduced IGF signaling in the brain (Cohen and Dillin, 2008).

The data presented here demonstrate that reduced IGF-1R signaling results in a profound reduction in the toxicity associated with Aβ expression in the brains of mice. The formation of larger and denser Aβ aggregates that appear to be more SDS resistant in the AD/igf1r−/− mice suggests that this is one core protective activity regulated at least in part by IGF-1R signaling, much like the disaggregate activity reported previously (Cohen et al., 2006). The indication that reduced IIS is protective in nematodes and mammals stresses that manipulation of the highly conserved IGF signaling pathway, and its downstream components, is promising for the development of novel neurodegeneration and proteotoxicity therapies.

**EXPERIMENTAL PROCEDURES**

**Mouse Strains and Genotyping**

AD-model male mouse expressing a mutant chimeric mouse/human APPsw/ and a mutant human presenilin 1 (Delta E9) both driven by the prion protein promoter was purchased from Jackson laboratory (strain B6C3-Tg [APPsw PSEN1 dE9] 8SDbc/J, stock number 004462).

**Long-Lived, Compromised IIS Mice**

Males harboring only one igf1r copy (S129 background [Holzenberger et al., 2003]) were obtained from Dr. Jeffery Friedman (TSRI, La Jolla, CA). Males of both strains were crossed for three generations with “wild-type” 129 females (Jackson laboratories, strain 129X/SvJ, stock number 000691), to set up two separate colonies. Mice of each colony were backcrossed for additional two generations. Next, igf1r−/− males were crossed with AD females for three generations to generate the experimental mice.

DNA was purified from biopsies of mouse tails and subjected to PCR. APPsw and PS1ΔE9 were amplified as directed by the Jackson Laboratories. igf1r was amplified using the following primers: forward: GTATAGTCCTATCGTATAGTCCTA, reverse: GTTCTGGCAGAAAACATGG.

**Additional mechanisms? Induction of ROS production?**

![Diagram](https://via.placeholder.com/150)

**Figure 7. IGF-1 Signaling Can Play Several Roles in Mitigating the Toxicity of Aβ**

The digestion of APP creates Aβ monomers that spontaneously aggregate to form toxic oligomers in vivo. At least two biological mechanisms can detoxify Aβ oligomers: (1) conversion of toxic oligomers into monomers (disaggregation), and (2) conversion of toxic oligomers into less toxic, larger structures (active aggregation). Within scenario 1, IGF-1 signaling normally functions to reduce protein disaggregates. Therefore, reduction of IGF-1 signaling would result in less oligomers and more monomeric forms of Aβ due to the activation of protein disaggregases. Our results are inconsistent with this scenario because we find less oligomers, but equal amounts of monomeric Aβ. Alternatively, in scenario 2, IGF-1 signaling could normally function to reduce proteolytic aggregate proteins that convert toxic species into larger, less toxic forms. Thus, reduced IGF-1 signaling elevates aggregate activity that in turn reduces the load of toxic oligomers and increases the compaction of less toxic fibrils. In support of scenario 2, we observed less soluble oligomers and highly compact amyloid plaques in AD/igf1r−/− animals. Alternatively, (3) IGF-1 signaling could promote proteotoxicity and neuroinflammation in response to toxic Aβ assemblies. Our results are also consistent with this proposed mechanism as we observed much less neuroinflammation in the brains of protected AD/igf1r−/− animals. Yet this lower inflammation rate could be directly related to the reduction of Aβ oligomers in these animals by increased aggregates. In scenario 4, reduction of toxic secondary factors, such as reactive oxygen species (ROS), might synergize with the production of toxic Aβ assemblies to promote neuronal loss. Consistent with this mechanism, igf1r−/− mice are much more resistant to oxidative damage than wild-type mice. Taken together, IGF-1 signaling could impinge at multiple steps on the path to neuronal loss and neurodegeneration in response to Aβ production and none of the interventions are mutually exclusive. Our data are most consistent with a model in which reduced IGF-1 signaling reduces the load of toxic Aβ structures, presumably dimers, which results in higher compaction of plaques, reduced neuroinflammation, and reduced neuronal loss.
Western Blot Analysis

Brains were dissected, homogenized, and divided by ultracentrifugation (100,000 g, 1 h, 4 °C) into cytosolic and membrane (particulate) fractions. For WB analysis, 15 μg per lane of cytosolic and particulate fractions, assayed by the Lowry method, were loaded into 10% SDS-PAGE gels and blotted onto nitrocellulose paper. Blots were incubated O/N with antibodies against APP/Aβ (ET10), Aβ (82E1), and C terminus APP (CT-15, courtesy of Dr. Ed Koo).

Next, membranes were incubated with secondary antibodies tagged with horseradish peroxidase (1:5000, Santa Cruz Biotechnology, Inc., Santa Cruz, CA), visualized by enhanced chemiluminescence and analyzed with a Versadoc XL imaging apparatus (Bio-Rad, Hercules, CA). Actin served as a loading control.

Rota Rod

Locomotion was tested using Rota Rod system (EconoMex, Columbus Instruments, Columbus, OH). Four mice were placed at a time on the rotating beam (60 rpm) five times a day, for 4 sequential days (total of 20 measurements/mouse). Four mice were placed at a time on the rotating beam during the experiment. A plastic tank 120 cm in diameter was filled with water to 20 cm to simulate swimming. The swimming path, swim velocity, time taken to reach the platform, and time spent in each quadrant were recorded. The experiments were repeated (10 trials) for each mouse.

Morris Water Maze

The Morris water maze was conducted as described previously (Jensen et al., 2005). Briefly, 11- to 15-month-old mice of the four genotypes were placed one animal per cage and numbered randomly to avoid genotype identification during the experiment. A plastic tank 120 cm in diameter was filled with room temperature (RT) water (23 °C), which was made opaque with white nontoxic paint. A transparent platform (8 cm × 12 cm) was located in the center of one of the four virtually divided quadrants and was submerged 0.5 cm below the water surface to be invisible. Distal cues were provided in all experiments as spatial references. Mice were let swim until platform was found or for a maximum of 60 s. Mice were allowed to rest on the platform for 15 s between trials. In all experimental settings we utilized a video tracking system (Ethovision; Noldus Information Technology, Leesburg, VA) to record and analyze the swimming path, swim velocity, time taken to reach the platform, latency, and time spent in each quadrant. The experiments were performed at the following order: cued platform (4 sequential days), hidden platform (4 sequential days), probe trial (1 day). The number of animals used was 13 (WT), 12 (gfrα1−/−), 8 (AD), and 15 (AD/gfrα1−/−).

Cued Platform

For the cued version of water maze testing, the platform was located 0.5 cm below the opaque water level but made clearly visible to the mouse by locating a 15 cm high stick carrying a dotted flag (3 cm × 4 cm) on the platform. The platform location was fixed throughout the experiment. The mice were released from four different locations around the water tank.

Hidden Platform

The platform was located at the same location used for the cued platform experiment, 0.5 cm below the opaque water level but without the dotted flag, to be invisible. The mice were released from four different locations around the tank. Time of latency, swim velocity, path length, and time spent at each quadrant were recorded.

Probe Trial

The platform was removed and the mice were allowed to swim for 40 s. The time spent in each quadrant and in the previous platform location, number of crossing the area where the platform was previously located, swim velocity, and path length were recorded.

Size-Exclusion Chromatography

A Superdex 75 10/300 GL column (Cat # 17-5174-01 GE Healthcare, Uppsala Sweden) attached to an AKTA FPLC system was used to separate Aβ oligomers from mouse brains. Column was calibrated using low MW calibration kit (GE Healthcare cat # 28-4038-41). Then 250 μl 10% (w/v) mouse brain homogenate (in PBS) was injected into the column and eluted with 50 mM ammonium acetate (pH 8.5) at flow rate of 0.5 ml/min. Twenty 1 ml fractions were collected, lyophilized, resuspended in 120 μl PBS and 40 μl LDS sample buffer, boiled for 10 min, and separated on 4%-12% Bis-Tris gels as described above.

Morphological and Postembedding Immunoelectron Microscopy

WT, Igfrα1−/−, AD, and AD/gfrα1−/− mice were sacrificed at the indicated ages. A piece of cortex from each mouse brain was fixed for 24 hr in cold 2% paraformaldehyde and 0.25% glutaraldehyde in PBS followed by washing in PBS and postfixed in 1% osmium tetroxide in PBS. The samples were washed in PBS and dehydrated in graded ethanol solutions followed by propylene oxide and embedded in Epon/Araldite mixture (Cat # 13940, Electron Microscopy Sciences, Hatfield, PA). The polymerized resin was sectioned (70 nm) using a diamond knife (Diatome, Hatfield, PA) and mounted on uncoated 400 mesh nickel grids (Cat# G4000-Ni, Electron Microscopy Sciences, Hatfield, PA). The polymerized resin was sectioned (70 nm) using a diamond knife (Diatome, Hatfield, PA) and mounted on uncoated 400 mesh nickel grids (Cat# G4000-Ni, Electron Microscopy Sciences, Hatfield, PA). The polymerized resin was sectioned (70 nm) using a diamond knife (Diatome, Hatfield, PA) and mounted on uncoated 400 mesh nickel grids (Cat# G4000-Ni, Electron Microscopy Sciences, Hatfield, PA). The polymerized resin was sectioned (70 nm) using a diamond knife (Diatome, Hatfield, PA) and mounted on uncoated 400 mesh nickel grids (Cat# G4000-Ni, Electron Microscopy Sciences, Hatfield, PA).

We thank Dr. Hyun-Eui Kim for expert assistance with size-exclusion chromatography and Dr. Gustavo Dziewczapolski for assistance with behavioral assay. We thank the McKnight Foundation (A.D.) and NIA P01 AG031097 (A.D., J.W.K., E.M.) for funding. E.C. and A.D. designed and initiated this study. E.C. crossed the mouse strains and performed the behavioral assays.

ACKNOWLEDGMENTS

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures and seven figures and can be found with this article online at http://www.cell.com/supplemental/2009-11132-86740901426-3.

Cell 139, 1157–1169, December 11, 2009 ©2009 Elsevier Inc. 1167
quantitative PCR, ELISA, size exclusion, and WB experiments. T.B.C. performed IHC experiments. Immunoelectron microscopy was carried out by J.F.P. D.D. executed in vitro kinetic aggregation assays. P.B. performed image processing of the EM data. A.A. assisted with IHC. G.E. assisted with mice genotyping and behavioral assays. H.M.P. assisted with WB. M.H. provided Ift1r−/− mice and expertise pertinent to Ift1r. E.C., A.D., J.W.K., and E.M. wrote the manuscript. A.D. and J.W.K. are founders of Proteostasis Therapeutics Inc. and disclose no conflict of interest in this study.

Received: June 6, 2009
Revised: September 11, 2009
Accepted: October 29, 2009
Published: December 10, 2009

REFERENCES


