The Critically Ill Stroke Patient: Why Neuro ICU Matters

Holly Hinson, MD
Division of Neurosciences Critical Care
Department of Neurology
Oregon Health and Science University
Portland International Neuroscience Symposium
July 18 - 21, 2013
Hilton Portland

Join top neuroscience physicians and scientists from around the world at the Inaugural Portland International Neuroscience Symposium. OHSU Brain Institute is pleased to offer an annual CME course that is designed to address state-of-the-art clinical topics and related research important to neuroscience specialists.

Hosted by the OHSU Brain Institute. Register online at: www.ohsubrain.com/cme
Disclosures

- 2012 American Brain Foundation Practice Research Training Fellowship for *Quantifying Paroxysmal Sympathetic Hyperactivity*

- 2013 NHLBI K12/Oregon Multidisciplinary Training Program for Emergency Medicine Clinical Research
Outline

• The Dedicated Neuro ICU
• The art of the Neuro ICU
 – Cerebral edema/ICP management
 – Fever control
 – Seizure control
• Does it work?
Neuro ICU at OHSU

- Founded in 2005
- 17 bed unit
- 24 hour CT/MRI access
- 24 Hour access to EEG techs, Epilepsy faculty
- Proximity to OR and Angio suites
- 24-7 Neuro-Intensivist coverage with 7 faculty
Patient Population

- Severe ischemic stroke
- Ischemic stroke following thrombolysis with tPA or thrombectomy
- Cerebral venous thrombosis
Patient Population

- Intracerebral and intraventricular hemorrhage
- Subdural and epidural hematoma
Patient Population

- Subarachnoid hemorrhage
- Cerebral aneurysms
- Cerebral and spinal vascular malformations
- Brain tumors
Patient Population

- Status epilepticus
- Meningitis and encephalitis
- Neuromuscular disorders in crisis (myasthenia gravis, Guillain-Barre syndrome) and acute myelopathies
What Can We Offer?

• Cerebral resuscitation
 – “The Brain Code”
• Disease-specific management
• Full complement of subspecialists
• Cutting-edge technology
Cerebral Resuscitation: acute catastrophic neurologic injury

- Catastrophic neurologic injury: ↑ICP ➔ herniation
Cranial Vault Mechanics

- **Monroe and Kellie**
 - Skull is a rigid container
 - Cranial contents (brain, blood, CSF) are viscous gel and incompressible
 - Additional volume (pathologic or expansion of the 3 normal contents) will lead to the displacement of another content

Cranial vault mechanics

CPP = MAP - ICP

CBF = CPP/CVR

CD02 = CBF x CaO2

ICP<20, CPP>60 = mortality reduction by > 50% in TBI

Cerebral Resuscitation: herniation syndromes

Subfalcine Herniation
Cerebral cortex under falx
- Ipsi/contra leg weakness
- ↓ mental status

Upward Herniation
Brainstem up through tentorium
- ↓ mental status
- Dilated pupil (CNIII), ophthalmoplegia
- Ipsi paresis/posturing (contra cerebral crus)

Central Herniation
Brainstem down through tentorium
- ↓ mental status
- Dilated pupil (CNIII), ophthalmoplegia
- Ipsi paresis/posturing (contra cerebral crus)
- Basilar stroke

Tonsillar Herniation
Cerebellar tonsils in foramen magnum
- Awake, quadriparesis
- Arrhythmia/cardiac arrest
- Respiratory arrest

Uncal Herniation
- Uncus over tentorial notch
- Dilated pupil (CNIII), ophthalmoplegia
- Ipsi paresis/posturing (contra cerebral crus)
- PCA stroke
Medical Interventions

Reduce Cranial Contents:
- Blood – vasodilation to constriction
- Venous Return
- Hyperventilation
- Reduction of CMR02

Brain water
- Osmolar therapy for edema

Surgical Interventions

Drain CSF
- Surgical removal of mass
- Break the rigid skull - craniectomy

Brain Code

Medical Interventions

Airway: O2 sat>90%
Breathing: normal CO2
Circulation CPP> 60mmHg

Surgical Interventions

Head of Bed:
- 30 degree, midline

Hyperventilation:
- pCO2 30 +/- 2 mmHg

Hyperosmolar therapy
- Mannitol IV 1 gm/kg IV
- Hypertonic saline (CVL)
 - 3% NaCl or 23.4% NaCl

Normothermia/?Hypothermia
Pharmacologic Coma
Cerebral Resuscitation: compartment approach to ICP management

Venous blood
- HOB up
- Neck straight
- No IJ lines, do not lay flat for lines
- Do not use venodilating BP agents

Arterial blood
- Hyperventilate
- Avoid hyperemia: MAP target 60, PaO2 > 50
- Decrease metabolism: sedation, cooling

Brain parenchyma
- Osmotherapy (mannitol, hypertonic saline)
- Steroids only if appropriate (Vasogenic edema)

Lesion
- Blood, tumor, pus -> surgery
- Air -> 100% NRB, surgery

CSF
- Place IVC
- Change popoff
Cerebral Resuscitation: arterial compartment

Arterial blood
- Hypervent
- Avoid hyperemia: MAP target 60, PaO2 > 50
- Decrease metabolism: sedation, cooling

Cerebral Resuscitation: compartment approach to ICP management

Venous blood
- HOB up
- Neck straight
- No IJ lines, do not lay flat for lines
- Do no use venodilating BP agents

Arterial blood
- Hyperventilate
- Avoid hyperemia: MAP target 60, PaO2>50
- Decrease metabolism: sedation, cooling

CSF
- Place IVC
- Change popoff

Brain parenchyma
- Osmotherapy (mannitol, hypertonic saline)
- Steroids only if appropriate (Vasogenic edema)

Lesion
- Blood, tumor, pus -> surgery
- Air -> 100% NRB, surgery
Cerebral Resuscitation: venous compartment

Venous blood
- HOB up
- Neck straight
- No IJ lines, do not lay flat for lines
- Do no use venodilating BP agents

If CVP exceeds ICP, CPP = MAP - CVP

Ropper: n=19. 52% had ↓ICP when HOB increased from 0->60°. 2% had ↑ICP.
Davenport: n=8. Median ↓ICP from 18->15 with 20° elevation, no ↓ in CPP until > 60°.
Lee: n=30. Trendelenburg positioning ↑ICP from 20->24, but ↓ICP in 20% of pts. (!)

Cerebral Resuscitation: compartment approach to ICP management

Venous blood
- HOB up
- Neck straight
- No IJ lines, do not lay flat for lines
- Do no use venodilating BP agents

Arterial blood
- Hyperventilate
- Avoid hyperemia: MAP target 60, PaO2 > 50
- Decrease metabolism: sedation, cooling

Brain parenchyma
- Osmotherapy (mannitol, hypertonic saline)
- Steroids only if appropriate (Vasogenic edema)

Lesion
- Blood, tumor, pus -> surgery
- Air -> 100% NRB, surgery

CSF
- Place IVC
- Change popoff
Cerebral Resuscitation: CSF compartment

CSF
- Place IVC
- Change popoff
Cerebral Resuscitation: compartment approach to ICP management

Venous blood
- HOB up
- Neck straight
- No IJ lines, do not lay flat for lines
- Do not use venodilating BP agents

Arterial blood
- Hyperventilate
- Avoid hyperemia: MAP target 60, Pa02>50
- Decrease metabolism: sedation, cooling

Brain parenchyma
- Osmotherapy (mannitol, hypertonic saline)
- Steroids only if appropriate (Vasogenic edema)

CSF
- Place IVC
- Change popoff

Lesion
- Blood, tumor, pus -> surgery
- Air -> 100% NRB, surgery
Cerebral Resuscitation: Brain parenchyma

Brain parenchyma
- Osmotherapy (mannitol, hypertonic saline)
- Steroids only if vasogenic edema
- Surgery (hemicrani, SOC)

Types of edema:
- Cytotoxic
- Vasogenic
- Hydrostatic
Cerebral Resuscitation: Brain parenchyma

Reflection Coefficient

- Sodium = 1.0
- Mannitol = 0.90
- Glycerol = 0.54
- Urea = 0.60
Osmotic Load

<table>
<thead>
<tr>
<th>Solution Concentration</th>
<th>Sodium Concentration (mEq/L)</th>
<th>Osmolarity (mOsm/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ringer's lactate</td>
<td>130</td>
<td>275</td>
</tr>
<tr>
<td>0.90%</td>
<td>154</td>
<td>308</td>
</tr>
<tr>
<td>2.00%</td>
<td>242</td>
<td>684</td>
</tr>
<tr>
<td>3.00%</td>
<td>513</td>
<td>1062</td>
</tr>
<tr>
<td>Mannitol 20%</td>
<td>n/a</td>
<td>1098</td>
</tr>
<tr>
<td>Mannitol 25%</td>
<td>n/a</td>
<td>1375</td>
</tr>
<tr>
<td>7.50%</td>
<td>1283</td>
<td>2566</td>
</tr>
<tr>
<td>23.40%</td>
<td>4004</td>
<td>8008</td>
</tr>
</tbody>
</table>

P.S. 1L of NS is 3.5g of Na⁺ in 1 liter of free water

Hinson et al, J Intensive Care Med (2011)
Cerebral Resuscitation: Brain parenchyma

• Both improve rheology of erythrocytes → increases deformability through small capillaries

• Mannitol easier to give: no central line

• HS increases vascular volume → improves CBF up to 23%

• HS reduces inflammatory response by reducing PMN adhesion to microvasculature

Recent Trials

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Type of Prospective Trial</th>
<th>Agent</th>
<th>Condition(s) Treated</th>
<th>Number of Patients?</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ichai/2009</td>
<td>Randomized Controlled</td>
<td>3% sodium lactate v. 20% mannitol</td>
<td>TBI</td>
<td>34</td>
<td>HS>Mannitol for ↓ICP, ↑GOS</td>
</tr>
<tr>
<td>Francony/2008</td>
<td>Randomized Controlled</td>
<td>7.5% HS v. 20% mannitol</td>
<td>TBI + Stroke</td>
<td>20</td>
<td>Both ↓ICP similarly</td>
</tr>
<tr>
<td>Battison/2005</td>
<td>Randomized Controlled</td>
<td>20mL 20% mannitol v. 100mL 7.5% HS dextran</td>
<td>TBI + SAH</td>
<td>9</td>
<td>HS>mannitol for ↓ICP</td>
</tr>
<tr>
<td>Harutjunyan/2005</td>
<td>Randomized Controlled</td>
<td>7.2% HS + 6% HES v. 15% mannitol</td>
<td>Neurosurg patients</td>
<td>40</td>
<td>HS>mannitol for ↓ICP</td>
</tr>
<tr>
<td>Viallet/2003</td>
<td>Randomized Controlled</td>
<td>7.5% HS v. 20% mannitol</td>
<td>TBI</td>
<td>20</td>
<td>HS>Mannitol for reducing elevated ICP episodes</td>
</tr>
</tbody>
</table>

Hinson et al, J Intensive Care Med (2011)
Adverse Effects

<table>
<thead>
<tr>
<th>Complication</th>
<th>Mannitol</th>
<th>Hypertonic Saline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renal Failure</td>
<td>Avoid continuous infusion, repeat high dosing</td>
<td>Avoid prolonged hypernatremia >160mEq/L</td>
</tr>
<tr>
<td>Rebound</td>
<td>Allow clearance prior to repeat dosing</td>
<td>Allow clearance prior to repeat dosing</td>
</tr>
<tr>
<td>Metabolic Acidosis</td>
<td>n/a</td>
<td>Reduce chloride in admixture</td>
</tr>
<tr>
<td>Hypokalemia</td>
<td>n/a</td>
<td>Add potassium to fluids</td>
</tr>
<tr>
<td>Hypovolemia</td>
<td>Concurrent volume resuscitation</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Hinson et al, J Intensive Care Med (2011)
Cerebral Resuscitation: compartment approach to ICP management

Venous blood
- HOB up
- Neck straight
- No IJ lines, do not lay flat for lines
- Do no use venodilating BP agents

Arterial blood
- Hyperventilate
- Avoid hyperemia: MAP target 60, PaO2 > 50
- Decrease metabolism: sedation, cooling

Brain parenchyma
- Osmotherapy (mannitol, hypertonic saline)
- Steroids only if appropriate (Vasogenic edema)

CSF
- Place IVC
- Change popoff

Lesion
- Blood, tumor, pus -> surgery
- Air -> 100% NRB, surgery
Cerebral Resuscitation: Lesion

• Surgical evacuation: STICH
 – Subjects with ICH (≥2cm) randomized to early (<24 hours) surgical evacuation v. medical management
 – No benefit to early surgery in general
 – Superficial lesions, large cerebellar lesions (≥3cm) may benefit
 – Summary: “Except for possibly those with superficial ICHs, craniotomy at 1 day or longer after onset is not better than initial conservative medical treatment with or without later craniotomy for patients who have deterioration.”

Cerebral Resuscitation: Lesion

• Hemicraniectomy in stroke: DECIMAL, DESTINY, HAMLET
 – All small trials showed non-significant trend toward benefit of hemicraniectomy
 – Meta-analysis suggests an absolute risk reduction of 13%
 – Patient selection?

Disease Specific Management: Subarachnoid Hemorrhage

- Feared Complications:
 - Hydrocephalus
 - Aneurysm re-rupture
 - Seizures
 - Vasospasm
 - Stressed myocardium
 - Neurogenic pulmonary edema
Disease Specific Management: Subarachnoid Hemorrhage

Blood pressure management
- Use of intermittent labetalol boluses or continuous infusion of nicardipine to maintain SBP less than 140 mmHg (unsecured) and less than 160 mmHg (secured)

Vasospasm prophylaxis
- Nimodipine 60 mg every 4 hours for 21 days

Vasospasm monitoring
- Daily transcranial doppler sonography for 14 days

Hydrocephalus treatment
- Extraventricular Drain (EVD) placement
Cardiac Support after SAH

- Reduced Ejection Fraction or Symptomatic Vasospasm
 - Fluids, vasopressors
 - Hemodynamic monitoring
Fever

• ~50% of stroke patients develop fever\(^1\)
• Body temp > 37.5°C significantly correlates with poor outcomes\(^2\)
• Fever in first 24 hours linked to infarct volume\(^3\)
• Induced normothermia may reduce metabolic stress\(^4\)

Fever and Hypothermia

• Fever treatment
 – Acetaminophen
 – Cooling blankets
 – Intravascular cooling devices

• Hypothermia
 – Not Standard of Care
 – No clinical evidence yet to support its use
 – National Acute Brain Injury Study: Hypothermia II terminated early for futility

1. GL Clifton, A Valadka, D Zygun *et al.* Lancet Neurol, 10 (2011), pp. 131–139
Seizures after Stroke

• Seizures occur in ~ 9% of patients1
 – Greater risk after hemorrhagic stroke
 – ~2.5% have recurrent seizures
 – Stroke location modifies risk
• Routine prophylaxis not recommended2
• Seizure always on differential in depressed mental status
 – Continuous EEG helpful in making diagnosis

1 Arch Neurol. 2000 Nov;57(11):1617-22. 2 Stroke. 2010; 41: 2108-2129
Does Neurocritical Care matter?

- Improved Mortality for ICH patients

Does Neurocritical Care matter?

- Reduced Mortality
- Shorter LOS
- More discharges to home/rehab

Does Neurocritical Care matter?

- Reduction in mortality after Neurointensivist appointed

Cerebral Resuscitation: outcomes

Long-term outcome after medical reversal of transtentorial herniation in patients with supratentorial mass lesions
Qureshi,,Geocadin,Suarez, Ulatowski, CRITICAL CARE MEDICINE 2000;28:1556-1564

- 11/28 (40%) survived to discharge
- 7/11 (59%) survivors functionally independent
Does Neurocritical Care matter?

YES!
Thank you!

• Questions?