Abstract
The emphasis of multilevel modeling techniques in the Neurosciences has led to an increased need for large-scale databases containing neuroscientific data. Despite this, such databases are not being populated at a rate commensurate with their demand amongst Computational Neuroscientists. The reasons for this are common to scientific database curation in general—limitation of resources. Much of Neuroscience’s long tradition of research is documented in computationally inaccessible formats, such as the pdf, making data extraction laborious and expensive. Here, we propose a series of studies designed to mitigate the bottlenecks in Neuroscience database curation. In particular, we focus our efforts on the Neuron Registry (NR), a community database of neurons-related information pulled from the primary literature. We describe three research projects and how they will extend preliminary research we’ve already completed to address the needs of the NR. First, we demonstrate how active learning can be used to efficiently increase the volume of data in the NR. Next, we describe the role of document classification algorithms in the NR workflow, discussing the motivation behind the machine learning approaches that were selected. Next, we show how a submission classification system will address important issues inherent to community databases, in particular the NR. Finally, we show how the results of our work here will be relevant to Computational Neuroscience and Biomedical Informatics alike, providing a novel solution to the problem of inefficiency in the development and maintenance of community data resources.

The Neuron Registry (NR) is a community database of neuron types, defined in terms of their properties. Such a database will be useful for computational studies, which will further our understanding of the neuronal bases of certain diseases.

The Challenges:
1. Use text-mining techniques to efficiently increase the volume of data in the NR.
2. Identify machine learning techniques useful for classifying the Neuroscience literature.
3. Develop text-mining methods for optimizing the community database curation workflow.

The Challenges:

Methods

[1] Increase Data

W

[2] Text-mining in the Neuroscience Literature

* Active learning will be used to optimize the annotation of additional data.
* Annotation will proceed until:
 - No statistically significant performance change.
 - 50% coverage of neuron types achieved.

Conclusions

[1] We describe a set of studies that will influence the Machine Learning, Biocuration, and Neuroscience communities.

[2] By extending previously-developed text-mining approaches, we will be able to create a text-mining system for community databases that will be useful in both low-data and high-traffic scenarios.