Healthy Brain Campaign: Get active

The OHSU Brain Institute has launched the Healthy Brain Campaign to spread the message that the key to maintaining a healthy brain is to do all of the things you know are good for your heart and your overall health. That is why we are dedicating each month, from March until October, to following the American Heart Association’s “Life’s Simple 7” steps to living a healthier lifestyle. During May, we urge you to take the second step in the series on “Life’s Simple 7” — which is to get active!

Get active by engaging in thirty minutes of moderate exercise, five times a week.  Physical activity may help you lose or maintain weight, lower your blood pressure, increase your HDL (or “good” cholesterol) and keep your blood sugar levels under control. Regular moderate physical activity (for 150 minutes or more per week) can help increase energy levels, relieve stress, and have a positive effect on mood.

And what about the flipside? Being physically inactive promotes an increase in several cardiovascular risk factors — such as cholesterol problems, hypertension, Type 2 Diabetes, and obesity — that can contribute to poor cognitive health. Despite the health benefits of getting active, nearly 70 percent of Americans do not get the physical activity they need.
Here are some basics about cardiovascular risk factors, which can contribute to poor cognitive health:

• The most common risk factors for cardiovascular disease in the United States are physical inactivity and obesity.

• The deaths of more than 200,000 people aged 75 and younger from heart disease and stroke in 2010 could have been prevented with lifestyle changes such as improved diet and exercise.

• There are approximately 700,000 heart attacks and nearly 800,000 strokes each year in the United States.

So how can you get active?

• Walk. Get outside and enjoy the beautiful weather — or even the light rain — during your lunch breaks, before or after work and on weekends.  You can record your daily steps with a pedometer and set a goal for yourself to gradually reach the recommended 10,000 steps a day

• Join a Team. It helps to have encouragement and support from workout companions, especially on days when you are feeling less than motivated to exercise. SW Trails PDX is a community group that promotes walking and biking in southwest Portland by leading regular monthly hikes.

• Stay Active at Work – The United States Department of Agriculture has provided several innovative “Tips for Increasing Physical Activity” at home, play and work. Among the recommendations: when coming home from work, people can get off the bus or subway one stop early and walk or bike the remainder of the way home.

Check with your health care provider before starting an exercise program. If you want guidance in initiating an exercise plan, explore the OHSU Medical Exercise Program or call us for more info, at 503-418-6272.

James Chesnutt, M.D.
Medical Director
OHSU March Wellness & Fitness Center and OHSU Concussion Program

Sarah Brown
Research Assistant
OHSU Brain Institute


May 12 Brain Awareness Lecture: Cancer and the brain

Several years ago, U.S. scientists launched a hugely ambitious project called the Cancer Genome Atlas.

It is a comprehensive and coordinated effort to increase our understanding of the molecular basis of cancer. The project is doing that through the application of something called genome analysis, including large-scale genome sequencing.

After the project launched in 2006, its first target was the brain. Project leaders wanted to learn more about the most common and lethal of brain tumors — a cancer called gliobastoma multiforme, or GBM.

Eight years later, scientists have discovered new details about key genes, proteins and pathways of GBM. These findings may someday lead to a better understanding of the disease — and ultimately, to new treatments.

All of this is exciting to me, as someone who wants to understand all forms of cancer better — at the molecular level — so we can beat them all.

I’ll be talking about cancer and the brain during my Brain Awareness Season lecture this Monday evening, May 12. The lecture, sponsored by the OHSU Brain Institute, will begin at 7 pm. at the Newmark Theater in downtown Portland.

Another thing I’ll be talking about is maybe a bit more surprising. We understand the connection between cancer and the brain with devastating brain tumors. But science is just beginning to understand something else: that the brain may influence aspects of our body’s physiology that in turn influence the behavior of cancers elsewhere in the body. It’s a fascinating new area of research.

And it might be another avenue toward our ultimate goal — beating all forms of cancer.

Joe Gray, Ph.D.
Associate Director for
Translational Research, Knight Cancer Institute
Director, OHSU Center for Spatial Systems Biomedicine


Healthy Brain Campaign: Quit Smoking

At the start of the OHSU Brain Institute’s Healthy Brain Campaign we encouraged you to partner with a Healthcare provider to educate yourself on the seven key health factors and behaviors that will keep your heart and brain healthy and enhance your quality of life. During April, our focus is on the first of the American Heart Association’s “Life’s Simple 7″ keys to better health — which is to quit smoking.

Health Risks

The health risks from smoking cigarettes are too significant to ignore. According to the U.S. Surgeon General’s latest report, cigarette smoking has claimed the lives of ten times the number of Americans who died in all of our nation’s wars combined.

Despite Surgeon General warnings and anti-tobacco campaigns, smoking remains the leading cause of preventable disease and death in the United States, killing nearly one-half million adults per year. Smoking harms nearly every organ in the body, but let’s just consider its effect on the heart and blood vessels.

Smoking and the Brain

Any amount of smoking can damage the heart and blood vessels by speeding up the build-up of fatty deposits (plaques) in the arteries – called atherosclerosis, and the development of peripheral artery disease. Smokers have lower levels of high-density lipoprotein — or HDL, the “good cholesterol” — and significantly higher levels of triglyceride and low-density lipoprotein — or LDL, the “bad cholesterol.” Unhealthy cholesterol levels can lead to high blood pressure, which in turn can cause scarring in the arteries that makes it easier for fatty deposits (triglycerides and LDL cholesterol) to stick and to harden, thereby restricting blood flow to your organs. If these plaques build up in the coronary arteries, this can lead to heart attack and heart failure. If the plaques build up in the arteries leading to your brain and then crack or rupture, this can lead to stroke.

The risks associated with smoking cigarettes are numerous, but so are the benefits associated with quitting smoking. Quitting can have almost immediate benefits on your health. For example:

  • Approximately 20 minutes after quitting, you can expect to see your blood pressure and heart rate normalize following a cigarette-induced spike.
  • After 12 hours, the carbon monoxide from your cigarettes will no longer be present at high levels in your body. Therefore your red blood cells will be able to bind and offload oxygen to your tissues without competition from carbon monoxide.
  • Within months following your decision to quit smoking, you will be able to breathe with more ease and perhaps even engage in heart – and brain – healthy activities such as walking, running or playing with your children.
  • After one year of non-smoking, your risk of coronary heart disease declines by 50 percent.

Find Help to Quit Smoking

  • First, partner with your primary care provider to find or develop a suitable program to help you quit smoking.
  • Check out the American Cancer Society’s Quit For Life® Program, which integrates free medication, web-based learning and confidential phone-based support from expert tobacco cessation coaches. You can get more info at 1-866 QUIT-4-LIFE (784-8454) or enroll online.
  • Also check out the U.S. Centers for Disease Control and Prevention’s education campaign – Tips From Former Smokers (Tips) and its guide to quitting.

Hormozd Bozorgchami, M.D.
Oregon Stroke Center
OHSU Brain Institute

Sarah Brown
Research Assistant
OHSU Brain Institute


April 7 Brain Awareness lecture: the adolescent brain

Adolescence is a time of dramatic behavioral, cognitive, social, and biological change. In recent years, techniques that scientists use to measure and image the brain have greatly enhanced our understanding of these changes.

I’ll be talking about some of these changes – and everything that scientists are learning about the differences in the teenage brain – during my Brain Awareness Season lecture this Monday evening, April 7. The lecture, sponsored by the OHSU Brain Institute, will begin at 7 p.m. at the Newmark Theater in downtown Portland.

What’s especially notable about the adolescent brain is that different systems of the brain are not developing at the same rates. This difference in developmental timing results in heightened vulnerability during the adolescent years.

Also, due to something called “neuroplasticity,” the adolescent brain is highly dependent on experiences. Neuroplasticity is how life experiences reorganize pathways in the brain. Neuroplasticity in the adolescent brain is especially high. This means that both positive and negative environmental influences play a role in shaping a teen’s functioning.

My lab at OHSU focuses on using techniques to better understand neurodevelopment in both healthy and at-risk adolescent populations. My presentation will describe the cutting-edge research surrounding these changes and help to explain why the adolescent period is a vulnerable and challenging time of development.

Bonnie Nagel, Ph.D.
Associate Professor, Division of Child and Adolescent Psychiatry
OHSU Doernbecher Children’s Hospital
Member, OHSU Brain Institute


Keeping your brain healthy — 7 simple steps

Keeping your brain healthy is simpler than you might think.

In fact, the best chance for keeping your brain healthy — far into your senior years — can be as simple as keeping your body healthy.

But it takes a commitment, and maybe just a bit of sideline support. So the OHSU Brain Institute has recently launched its Healthy Brain Campaign. At the center of the campaign are seven simple lessons to live by — and live well by. They are the American Heart Association’s “Simple 7″ steps for healthy living: get active, control your cholesterol, maintain a healthy weight, eat better, manage your blood pressure, reduce your blood sugar and stop smoking.

Over the next several months, the Brain Institute’s Healthy Brain Campaign will focus on those simple steps — and help you understand how to achieve each one of them. But you need an accomplice and a helper. The first step is to work with your primary care provider. Or, if you don’t have one, find one. Here are some simple steps:

• find the primary care providers who are covered by your insurance plan’s network.

• learn more about the providers who interest you. If you are interested in an OHSU provider, OHSU has a web page that can help. You can also learn more about many Portland area physicians at Portland Monthly’s annual review of top physicians. WebMD’s website also has a physician directory that provides a listing of physicians, including their locations, years of experience and insurance carriers they accept.

• once you find your provider, develop a trusting and effective relationship with him or her. Be open about your health concerns and your lifestyle. Ask questions. Listen carefully to your provider’s advice. Work with your provider to set realistic goals — and then begin implementing the changes she or he recommends.

The road to better health — and toward maintaining a healthy brain — has a first step. Take that first step.

Joe Quinn, M.D.
Director, OHSU Parkinson Center
Professor, Department of Neurology
OHSU Brain Institute

Kent L. Thornburg, Ph.D.
M. Lowell Edwards Chair,
 Professor of Medicine, OHSU School of Medicine
Director, Center for Developmental Health, Knight Cardiovascular Institute
Director, Bob and Charlee Moore Institute for Nutrition & Wellness

One more shot of espresso, for memory’s sake

How much do Portlanders love their coffee? A lot. According to a 2011 poll by CNBC, Portland is the third most caffeinated city in the U.S., with almost 900 coffee shops and 30 local coffee roasters.

And does this love of coffee have any effect on brain health? A new study published in the journal Nature Neuroscience suggests that caffeine might actually be a good thing for how our brain stores and processes long-term memories.

Many studies have documented the positive effects of caffeine on attention and processing speed, which we are all probably familiar with from our own personal experiences. I’m usually happy with just one small cup of coffee with breakfast. But if I feel sleepy after a big lunch, sometimes I’ll indulge in a second cup to perk myself up for a busy afternoon or evening. Like most people, I usually think of caffeine as a little pick-me-up to give me the energy to tackle a task that I have to take on in the future.

In the new study by Daniel Borota and his colleagues, the researchers flipped the caffeine question around to ask: what if we give subjects caffeine after they perform a memory task? This is called a “post-study” design, and the researchers paired it with a randomized, double-blind, placebo-controlled experimental set-up. Randomized means that the 160 subjects were randomly assigned to the caffeine or non-caffeine (placebo) conditions. Double-blind means that in addition to the researchers not knowing which group each subject belonged to when they were collecting and analyzing the data, the test subjects did not even know they were going to be asked to perform a memory task. Experimental studies are designed with these features to reduce conscious and unconscious bias both in the test subjects and the researchers, so that the results and conclusions can be as biologically meaningful as possible.

There were two other important characteristics of the test subjects that allowed the researchers to conclude that changes in memory were associated with the caffeine given during the study. All the subjects consumed only small amounts of caffeine in their daily lives (even less then I drink!), and they were “caffeine-naïve,” meaning that they did not have any other sources of caffeine in their diet during the study.

The test subjects were shown a series of common, every day objects, and were asked to report on certain qualities of each object. After the test period, they were then given a moderate amount of caffeine or placebo. Twenty-four hours later, they were tested again, but this time they were asked to recall if the objects presented were different, similar, or exactly the same as the objects they saw the day before. Those who had received caffeine the day before were better at knowing the difference between objects that were exactly the same vs. objects that were similar to the previous day. The researchers concluded that caffeine given after the task had a significant impact on the subjects’ ability to consolidate and store long-term memories, specifically when it comes to distinguishing between similar but different objects.

Importantly, the researchers measured the amount of caffeine in the saliva of all subjects, and showed that there was no caffeine in their system on the second day, at the time of the memory task, indicating that caffeine did not affect the subjects’ ability to recall memories. Furthermore, when caffeine was given just before the memory task on the second day, there was no benefit, which shows that caffeine was not able to beef up memory retrieval.

Of course, we all have had the experience where too much coffee sends you into a jittery, counter-productive, can’t-sit-still-and-focus state. Along these lines, the researchers also report a dose effect in their study: 200 milligrams of caffeine produced the optimum effect, while 100 milligrams was not enough, and a higher dose of 300 milligrams did not significantly enhance the effect. To put that into perspective, a 16-ounce Starbucks drip coffee has about 330 milligrams of caffeine, while a 16-ounce latte has only 150 mg, and an espresso shot has about 75 milligrams.

As with most things, moderation is key. But perhaps a bit of caffeine right after your next big brain-demanding task will help you remember those important parts of your day.

Kateri Spinelli, Ph.D.
Post doctoral fellow, Dept. of Neurology
OHSU Brain Institute

The road to a healthy heart is the road to a healthy brain

What if we told you that you could live your life in simple ways that give you a very, very good chance of having a healthy heart and a sharp brain well into old age?

No special drugs, no special surgeries, no amazing scientific discoveries and no wonder cures.

Sounds pretty good, doesn’t it? And it’s simple. Science is beginning to understand that the route to a healthy brain and healthy heart might be pretty much on the same road. The important mileposts on that road: eating smartly, getting moderate exercise, controlling your weight, your blood pressure and your cholesterol levels and stopping smoking.

The two of us — one a brain expert, the other a heart expert — will talk about brains and hearts and health this Monday night, Feb. 24, as part of the OHSU Brain Institute’s Brain Awareness Season lecture series. Our lecture will begin at 7 p.m. at the Newmark Theater in downtown Portland.

We’ll talk about how science has known for years that following some of these “living healthy” principles can help your heart health. But we’re increasingly seeing that the same good practices that help your heart also seem to help your brain.

For example, science knows no absolute cure or prevention — yet — for dementia. But there are hints.

A long-term study of 678 Roman Catholic nuns (known, not surprisingly, as the Nun Study) has shown that in patients with an equivalent number of “plaques” and “tangles” in the brain associated with Alzheimer’s disease, only those who also had had small strokes showed signs of dementia. That could mean small strokes somehow “activated” the dementia in brains that had the plaques.

And that suggests that if you decrease your risk factors for stroke — by following those “living healthy” principles — you also decrease your risk of dementia.

We’re also increasingly understanding how important prenatal nutrition is to that baby’s health — heart health, brain health and overall health — as an adult. Lower birth weight from poor prenatal nutrition means a higher risk of stroke and heart disease. And many organs, including the heart and brain, grow abnormally when nutrition is poor before birth.

There’s a lot more to talk about, in terms of how lifestyle decisions you make every day have a long-term effect on your heart and brain. So join us Monday night — on the road to better heart and brain health.

And you don’t have to stop learning on Monday. You can learn much more by joining the OHSU Brain Institute’s just-launched Healthy Brain campaign. The campaign will offer monthly tips and a way to celebrate your progress and learn more from each other and OHSU experts in September.

Joe Quinn, M.D.

Director, OHSU Parkinson Center
Professor, Department of Neurology
OHSU Brain Institute

Kent L. Thornburg, Ph.D.
M. Lowell Edwards Chair,
 Professor of Medicine, OHSU School of Medicine
Director, Center for Developmental Health, Knight Cardiovascular Institute
Director, Bob and Charlee Moore Institute for Nutrition & Wellness


Your brain … in love

Neuroscientists have long wondered whether or not there’s a love locus in the brain; a spot where romance resides amidst the complex circuits and intricate chemicals that comprise our emotional nervous system. Recent studies have surprised us as neurologists; there is such a spot and, interestingly, it involves the nerve cells and neural circuits that drive us to crave food, water and even illicit drugs. And these are not the circuits that involve lust or sexual desire.

Recent studies support this love locus by demonstrating brain images in functional MRI scans. These specialized scans display pictures that capture the activity, not just the structure (as in regular MRI scans) of brain cells. Young, love-crazed college students were shown pictures of the objects of their affection while undergoing functional MRI scans. Behold, the parts of the brain that were activated when the students saw their love’s photograph were the areas that have a high concentration of dopamine, one of the brain’s key neurotransmitters.

Dopamine is a chemical that carries messages that influence reward, craving, and, also, drug addiction. So, in effect, these young lovers were truly “addicted” to one another, and, in fact, were found to have physically painful withdrawal symptoms when their fresh young love was thwarted.

But what about those of us long past the dizzying, delirious highs of a fevered, lovesick youngster? Actually, there is great news for those of us much farther into our relationships with the one we love. A recent study from Stony Brook University in New York demonstrated that some mature couples — who had been in love for years, even decades — still had the burst of frenzied activity in the dopamine pathways in the brain when they looked at pictures of their longtime lovers. Just as if they were college students. So no one can say that young love fades and passion wanes over time, at least not from a neurobiological standpoint!

Love does live on, but it also has many facets. I was particularly enthralled by a study from the University of Minnesota, whose researchers asked young men and women to make four lists: of their friends, the people they loved, the people they thought sexually attractive, and, lastly, those with whom they were “in love.”

The last list most often had just one name. But, consistently, that name was also on all the other lists. True love is a powerful force that embraces friendship, affection, sexual attraction and romantic impulse. It is as intoxicating as a drug. So this Valentine’s Day, I hope you appreciate the complex pathways in your brain that comprise those feelings you have of potent and enduring romantic love. Whatever your age, and however long you have been in love.

Tarvez Tucker, M.D.
Associate Professor of Neurology and Neurocritical Care
OHSU Brain Institute


Next OHSU brain awareness lecture: fighting traumatic brain injury

The impact of concussions and other traumatic brain injuries on society are staggering.

How staggering? Consider these numbers:

• Each year in the U.S., 3.4 million people suffer a traumatic brain injury, or TBI.

• TBI is one of the leading causes of death and disability in America. Each year, 53,000 Americans die due to TBI.

• Eight teenagers die every day in the U.S. from TBI.

• There are 5 million Americans living with TBI-related disabilities; direct and indirect costs of TBI in the U.S. is $76 billion per year.

The non-profit I work for — One Mind for Research — is led by retired U.S. Army General Peter Chiarelli, former commander of the multi-national corps in Iraq. He has seen first hand how TBI has affected America’s soldiers. And he is now helping to lead the fight to find ways to battle and prevent TBI.

One Mind for Research’s mission is to fund groundbreaking research and accelerate development of better diagnostics, better treatments, and ultimately, preventions and cures for a wide range of mental illnesses and brain injuries. One of our most important goals is to help science make advances in understanding, treating and, ultimately, preventing and curing TBI.

While TBI affects millions of people worldwide, it is a silent epidemic — its symptoms are frequently invisible, thus difficult to diagnose and treat. But while symptoms aren’t always easy to notice, TBI leads to motor, cognitive, and social impairments that interfere with an individual’s ability to be productive.

One Mind’s initial research project is called the “Gemini Program,” which will include 3,000 to 5,000 patients with traumatic brain injury and, in some cases, post traumatic stress. The patients will participate in a multi-year longitudinal study that will help researchers learn more about these devastating conditions.

Want to learn more about the fight against TBI? I am speaking this coming Tuesday evening — Feb. 18 — in Portland as part of the Brain Awareness Season lecture series sponsored by the OHSU Brain Institute. Gen. Chiarelli has prepared a video presentation that will also be shown at the lecture.

I hope you can join me. We need more people to understand TBI — and to join us in the fight against it.

Janet Carbary
Chief Financial Officer
One Mind for Research


Brain Insitute speaker: Mad Cow expert and neuroscience pioneer

Did you know that, according to the American Red Cross, you are forbidden from donating blood in the United States if you have spent a cumulative time of three months or more in the United Kingdom, from Jan. 1, 1980 through December 31, 1996?

The reason? It stems from the discovery that in some parts of the world, cattle can get an infectious, fatal brain disease called Mad Cow Disease. In these same locations, humans have started to get a new disease called variant Creutzfeld-Jacob Disease, also a fatal brain disease.

Jean Manson, Brain Awareness Lecture Series speaker

All of this relates to the first lecturer in the OHSU Brain Institute’s popular Brain Awareness Season lecture series. The lecture, at 7 p.m. on Monday Feb. 10 at the Newmark Theater in downtown Portland, will be presented by Jean Manson, one of the world’s leading experts on the group of diseases that include Mad Cow Disease.

But first, a few more details on what Mad Cow Disease has to do with humans.

Scientists believe that variant Creutzfeld-Jacob Diseases is Mad Cow Disease that has somehow transferred to humans, possibly through the food chain. There is now evidence from a small number of case reports involving patients and laboratory animal studies that vCJD — as it’s sometimes called — can be transmitted through blood transfusion. There is no test for vCJD in humans that could be used to screen blood donors and to protect the blood supply. This means that blood programs — like the American Red Cross’s — must take special precautions to keep vCJD out of the blood supply by avoiding collections from those who have been where this disease is found.

Which means that the OHSU Brain Institute’s first lecturer — a world renowned expert on this group of diseases — is not allowed to give blood in the United States.

Manson is head of the neurobiology division of the Roslin Institute in Edinburgh, Scotland. (The Roslin Institute is where the world’s most famous sheep, Dolly, was cloned.) She is also chair of Neurodegenerative Disease at the University of Edinburgh.

Professor Manson is an internationally recognized research scientist in what are called transmissible spongiform encephalopathies, or TSEs, a group of fatal diseases that affect the brain and nervous system of many animals, including humans. They’re also called prion diseases. Mad Cow Disease and Creutzfeld-Jacob Disease are within this group of diseases.

Research into the prion diseases not only tries to advance scientific knowledge into these mysterious diseases. It also has led to research advances in conditions such as Alzheimer’s disease.

Professor Manson will be talking about all of that during her lecture. She’ll also talk about the differences in how neuroscientists in the United Kingdom and the United States investigate brain disease.

Although I don’t study prion diseases specifically, my own research focuses on the aging brain and neuroendocrine changes that lead to cognitive impairment in the elderly. So as a neuroscientist, I’m very interested in her work.  (We also share the blood-giving problem; like Manson, I can’t give blood in the United States, since I’m originally from the U.K.)

I’m going to be there to listen. It promises to be fascinating.

Henryk Urbanski, Ph.D., D.Sc.
Professor and senior scientist, divisions of Neuroscience and Reproductive & Developmental Sciences, Oregon National Primate Research Center
Professor, Departments of Behavioral Neuroscience and Physiology & Pharmacology, OHSU Brain Institute

OHSU Brain Institute

OHSU Brain Institute Profile image

We are a national leader in brain disease treatment and research.

Participation Guidelines

Remember: information you share here is public; it isn't medical advice. Need advice or treatment? Contact your healthcare provider directly. Read our Terms of Use and this disclaimer for details.