Cleaning while we sleep: A novel approach in Alzheimer’s research

ThinkstockPhotos-490755478Every 67 seconds, an American develops Alzheimer’s disease. It affects 5.3 million people in the US and if no medical breakthroughs to prevent or cure the disease are found, this number will triple by 2050.

In 2013, Jeffrey Iliff helped discover how our brains flush out toxic waste as we sleep. This is waste that builds up in our brains during the day – including the Alzheimer’s-linked protein, amyloid beta.

His findings, which he’s advancing by the day, could potentially lead to the treatment, and maybe even prevention, of Alzheimer’s. We catch up with him to find out about how his work has developed over the past few years, the unforeseen twists and turns that led him down this important avenue, and what he looks for in the next generation of Alzheimer’s researchers.

Why are our sleeping brains pertinent to our brain cleansing system?

It seems that sleep has evolved to maximize a bunch of maintenance-type functions in our brain, and this cleaning process one is just one of them. It’s arguably not even the most important one. But for whatever reason, our brain function is optimized when these housekeeping functions happen during sleep, allowing us to maximize our performance while we’re awake.

But why that is we don’t really know yet.

You helped discover an important potential link between sleep and the development of Alzheimer’s disease. What were your key findings?

There are two main findings in our research that everything else rests on. The first is in a paper we published in 2012 about cerebrospinal fluid circulation. This is the fluid that surrounds the brain. We were able to show that a substantial portion of it is actually recirculating back into and through the brain.

It does this by essentially using the blood vessels as a scaffold to provide access to the entire brain tissue. The movement of this fluid along vessels and through the spaces between the brain’s cells appears to be involved in the clearance of amyloid beta out of the brain interstitial fluid.

The second main finding relates to a paper we published in 2013. Here, we showed that this cleaning process is primarily a feature of the sleeping brain. Both the movement of cerebrospinal fluid along the outside of blood vessels and back through the brain, and the clearance of amyloid beta, occur much more rapidly in a naturally sleeping and anesthetized brain, compared to the waking brain.

How has your research developed since this finding? What new information have you brought to light?

To boil it down, our current research focus is essentially to analyze what’s going wrong within this cleaning system at a molecular level, and then to translate that into human subjects.

Firstly, our last few papers have shown that in both the aging and injured mouse brain, this cleaning of the brain slows down. We want to define on a molecular and cellular level what’s going wrong in the aging and injured brain that’s slowing down this process, and whether that makes it vulnerable to amyloid beta deposition or tau aggregation.

But at this point, none of this work has been validated in humans – we don’t really know if this cleaning process happens in the human brain during sleep, much less whether this process contributes to the development of Alzheimer’s in people.

So I’m excited that we’ve received funding from the Paul G. Allen Family Foundation to look into this. They are funding our group to extend our work on sleep and the aging brain – essentially from mouse models into humans.

The first step in that process is to develop clinical imaging approaches to measure the system’s activity in the sleeping and waking human brain. The study will then move on to analyze that process in the aged human brain, and in the brains of people who appear to have the beginnings of Alzheimer’s disease.iliff-ted

How might your research and recent developments help prevent Alzheimer’s disease?

The encouraging thing is that there’s an increasing push on the therapeutics’ side to identify people who don’t have Alzheimer’s disease yet, but are expected to at some point in the future. That’s one of the motivations behind the development of amyloid PET imaging and cerebrospinal fluid biomarkers, for example.

A study that just came out of Washington University in St. Louis reported that CSF biomarkers consistent with Alzheimer’s disease could be detected as early as 45 to 55 years of age. If amyloid deposition begins that early, then it’s possible the failure of this clearance system is happening even earlier.

So, if we can develop imaging approaches that aren’t prohibitively invasive, then it may be possible to identify people who may be susceptible to amyloid beta deposition in the decades to come. That would offer a very wide window for lifestyle interventions, or drug therapies if effective drugs can be developed.

That’s the really exciting and promising thing for the future: First, this cleaning system may be a new therapeutic target, and imaging it may allow us to develop a new biomarker that identifies vulnerability at an earlier stage in the disease process than our current biomarkers can.

How long do you think it will take to reach this point?

A number of important things still need to be done. I think we’ll know whether these ideas have legs and traction in the next three to five years. If the function of this system can be validated in human subjects, and if its impairment can be causally linked to amyloid beta deposition, then things move on to identifying drugs that might modulate this pathway. That can go quickly or slowly depending on what the data looks like.

Has your research taken any unexpected turns?

The magnitude of the sleep-wake effect was very surprising. But admittedly, all of this research has been one big, unexpected turn that we’ve been trying to chase and learn from along the way.

My background isn’t in Alzheimer’s disease or sleep at all – it’s in vascular physiology. I started my postdoc in a glial cell biology lab and thought I’d be a basic science researcher for the duration of my career. The shift to clinical subjects and clinical samples wasn’t something I anticipated, but it’s probably been the most exciting thing that’s happened in my career.

What event sparked the change in your career?

Jeffrey Iliff, Ph.D.

Jeffrey Iliff, Ph.D.

For my PhD, I studied the regulation of brain blood vessels, which is really a largely vascular subject. At the beginning of my post doc I went to talk to my supervisor, Maiken Nedergaard, and she showed me a paper written in 1984. It was by the American neuroscientist Patricia Grady about the movement of cerebrospinal fluid tracers into the brain along blood vessels, and was a somewhat controversial paper at the time.

I was only five years old when the study came out, so when Maiken said, “I want you to redefine water movement in the brain,” I had almost no idea what that meant at all! It was a whole field that at the time I knew nothing about, and she knew very little about.

So, almost from day one it was like we were wandering out into the middle of nowhere, and then we happened to hit this major road – a road that has been very, very interesting. And we’ve been working on it together, and then separately in our own labs, ever since.

What was your greatest ‘eureka’ moment in the lab?

The biggest eureka moment for me was when I was doing the dynamic imaging of the vasculature in the brain. I now use these videos in every talk that I give because they are so evocative. It’s like this: the blood vessels are always red and the tracer we inject into the cerebrospinal fluid circulation is always green.

You see the red blood vessels there, and then the green tracer runs into the screen along the outsides of the vessels – it forms a halo around the blood vessel as it moves through the perivascular space.

The first time I saw that it really struck me because I was expecting something very, very different. I thought the green cerebrospinal fluid would flood over the screen, for example. But instead, it was restricted to this very narrow, anatomical pathway; it was so specific in where and how it moved.

The fact I could see it happening in front of my eyes in real-time, and follow and chase it around, made it very real for me. And then the videos that come from this imaging are extremely believable and compelling for other people, too – in a way that an image of fixed tissue in a paper isn’t. So that was a big moment – one that drove me forward in my research.

You have a postdoctoral position open in your lab. Do you have any advice or tips for people thinking of applying, or for those entering your area of research?

When I’m looking for a post doc I’m not looking for a technician. I can get hands – that’s not a problem. What I want is people who have better ideas than I do; I want people in my lab who are more creative than I am, and that can bring something new that’s going to change my science.

Having a different background is extremely valuable because you can offer a new take on the science that we’ve been looking at the same way for the last 5 years.

I’m also looking for someone who has a defined idea of what they want to do when this post doc is over. Many applicants don’t have a clear vision of how they’re going to become an independent researcher – which is an end goal I hear a lot.

My goal is to help them get there, I’d love to do that. But if they haven’t thought of how their science and my science can interact in a way to get them there, then they’re missing a critical step.

In the interview I want to see this drive, energy, creativity, and familiarity with our work. And that’s because when I hire for these post doc positions, I’m looking for a potential partner.

This story was originally published on ResearchGate News to highlight the work of neuroscientist Jeffrey Iliff (Oregon Health & Science University) for this year’s World Alzheimer’s Day on September 21, 2015.

OBI’s Bobby Heagerty featured at national meeting

The Society for Neuroscience (SfN) held its 45th annual meeting in Chicago recently, attracting 30,000 neuroscientists from around the world to the windy city.

Photo credit: Bill Griesar, NW Noggin

Photo credit: Bill Griesar, NW Noggin

Bobby Heagerty, director of community education and outreach for the OHSU Brain Institute (OBI), was asked to participate as a keynote speaker for the workshop on Brain Awareness.

Introduced by Steve Hyman, president of SfN, and attended by several hundred participants, Bobby’s presentation made five key points to how to create a successful public engagement campaign: organization, promotion, constituency data, leverage and connections.

In her typically enthusiastic manner, Bobby joked that being organized and a promoter can also be equated to being a border collie and cheerleader. To get the group through the gate requires resourcefulness and attention; and standing up to brag about the latest in neuroscience can only lead to more connections.

Keeping the public engaged and informed about this latest neuroscience is vital, and every event should include a way to collect contact information for interested constituencies – clip boards are key!  A strong support group standing behind your platform provides leverage to run with ideas.

And finally, in her own words, “All of these individuals, programs, initiatives, events and mechanisms should be seen as part of weaving a gorgeous tapestry.”

Photo credit: Bill Griesar, NW Noggin

Photo credit: Bill Griesar, NW Noggin

Bobby is the 2013 winner of SfN’s Educator of the Year Award, and started the Brain Awareness Season in Portland in 2000.

Over the years, she has grown the program from a small lecture at a local church, to a five-part series at the Newmark Theater featuring national speakers, a brain fair at OMSI, a SfN Oregon Chapter meeting, and a Teacher Workshop.

It’s no wonder she was asked to pass along her keys to success to this international crowd!

The Society for Neuroscience is a non-profit organization with nearly 40,000 members around the world, the largest group of scientists and physicians working to learn more about the brain and nervous system.

The Oregon Chapter, one of 130 chapters worldwide, is led by Dr. Larry Sherman, senior scientist in the Division of Neuroscience at the Oregon National Primate Center. The Chapter’s annual meeting will take place in May 2016.




Kate Stout is the Program Coordinator, Community Education and Outreach for the OHSU Brain Institute.



Sleep expert shares his secrets for easing into the upcoming time change

The end of daylight saving time is soon approaching, and while most of us look forward to that “extra” hour of sleep, there are a few things to think about when society’s clock changes, but our biological clock doesn’t.Autumn leafs and alarm clock on wooden table.

With the time change, our streets and roads become darker closer to rush hour. This poses increased danger for drivers, bicyclists and pedestrians alike.

Studies have shown increased accidents due to poor visibility and possibly because of increased drowsiness in darker environments.

Here are some tips to help you get through the upcoming time change.

1. Preparation

Generally speaking, it is easier for us to adapt to the fall time change because it is easier to stay up later than to sleep earlier. However, there are those that do have difficulty staying up later than their usual time, and if time allows, they should try to do so as the days approach the end of daylight saving time. The principle is to keep roughly the same schedule you normally did before the time change.

2. Get a good night’s sleep

Sometimes people try to “take advantage” of the extra hour by staying up late and partaking in things that are known to disrupt sleep further such as alcohol and caffeine close to bedtime.

3. Use light to your advantage

The strongest determinant of your biological clock (or your “circadian rhythm”) is light. The fall time change heralds shorter and darker days. For some, this can lead to disrupted sleep schedules and even depression. If there is natural sunlight, this can be helpful to combat these problems. In the absence of natural light, light box therapy has been used to both adjust people’s biological clocks and to combat seasonal affective disorder, which is a type of depression associated with darker days.

4. Remember safety

Remember that time changes are associated with increased automobile, bicycle and pedestrian accidents. Be careful out there. Also use this time to remind you to make your home safer. Check your batteries on your smoke and carbon monoxide detectors. Check the supplies of any emergency preparedness kits you may have, especially ones for the winter. See that your fire extinguishers are up to date.

What are your strategies for dealing with the time change? Share them in the comments!


Gopal Allada, M.D. is a Clinical Associate Professor of Medicine who specializes in Critical Care, Sleep Medicine, Cystic Fibrosis and Pulmonary Medicine.

Five things you should know when caring for a loved one with dementia

Caregiving for a loved one with dementia can be challenging to your family dynamics, your finances, and more. But did you know, it can also be hard on your emotional and physical health?

Research shows that caregivers for persons with dementia are more vulnerable to health problems such as hypertension, diabetes, depression, anxiety and insomnia.

It is important that caregivers take care of themselves as well as their care-recipients.

1. Find, and attend, a support group.

It takes effort to find, and actually attend, a support group, but the effort is worth it. Support groups offer information, guidance, and well, support. It is important to be around others who understand what you are going through.

The Alzheimer’s Association has a variety of support groups across Oregon that serves caregivers and their care-recipients.

Know that the Alzheimer’s Association serves everyone with memory loss, not just Alzheimer’s.

2. Call your county’s Family Caregiver Support program.

The Multnomah County program provides a wealth of information and can connect you to a variety of helpful services. They may even be able to pay for assistance for you- such as a massage, a care provider to give you a break, a gym pass, etc.

This program is free to all and helps people from all walks of life.

3. Find activities outside the home for your family member with dementia.

This will give your family member a chance to get out of the house and give both of you a break. Both the Family Support Program and the Alzheimer’s Association can help you find classes or adult day programs for persons with dementia.

4. Exercise!

Exercise will help your mood and stress levels and protect your body over the years. A good exercise program will also help you sleep better at night.   Find an activity that you enjoy and make sure it gets your heart rate up. A good starting point is to walk with hand weights. Even better–attend an exercise class at a local community center.

5. Ask for help.

What if you can’t do any of the above? Some caregivers are so busy they have little time for self-care.

I recommend picking up the phone and calling either the Family Caregiver Support Program at 503-988-3646 or the Alzheimer’s Association at 1-800-272-3900.

Tell them, “I am a caregiver, I need support, but I don’t know how to do this.”

They will take it from there—and you’ll be glad you called.

The main message I want to convey is to reach out to others for support—even if you think you don’t need it.

You don’t have to walk this road alone—there are people standing by who can, and want, to help!




Allison Lindauer, N.P., Ph.D. is an Assistant Professor at The Layton Aging and Alzheimer’s Disease Center.

Early diagnosis of Alzheimer’s disease is key goal for OHSU researchers

Alzheimer’s disease is the most common form of dementia and is the sixth leading cause of death in the United States.

Symptoms include memory loss, personality changes and trouble thinking, and the disease typically worsens over time.

Julie Saugstad, Ph.D. and Joseph Quinn, M.D.

Julie Saugstad, Ph.D. and Joseph Quinn, M.D.

Current treatments cannot stop the disease from progressing, but they can slow the development of symptoms temporarily.

Clinical diagnosis is determined by noting the degree of a patient’s mental decline, which is not obvious until there is severe and permanent brain damage.

There are no biomarkers that can be used to predict the onset or distinguish early Alzheimer’s from age-related memory loss.

Extracellular RNA (exRNA) communication is a recently discovered cell-to-cell signaling process that holds enormous promise for improving our understanding of a wide variety of diseases.

In 2013, the NIH Common Fund provided support for 30 research projects designed to explore and enhance scientists’ understanding of exRNA communication in normal and disease states.

18 of these grants were administered by the NCATS including our UH2/UH3 grant to study the clinical utility of microRNAs (small RNAs that do not code for protein) in cerebrospinal fluid as biomarkers of Alzheimer’s.

The Oregon Alzheimer’s Disease Center (OADC), the core program of the OHSU Layton Aging & Alzheimer’s Disease Center, holds CSF samples donated from AD patients and control subjects.

In the UH2 discovery phase, our studies using samples from the OADC revealed approximately 30 microRNAs that are different between Alzheimer’s disease and control cerebrospinal fluid.

In the newly funded UH3 phase, we will validate expression of these microRNAs in a new and larger set of cerebrospinal fluid samples.

Our long-term goals are to detect changes in microRNAs earlier in the disease process, which would allow patients to start treatments sooner and possibly slow or prevent brain function decline and damage, and to potentially gain new information regarding the underlying cause of Alzheimer’s disease.

UH2/UH3 Team:
Julie Saugstad, Ph.D. – Anesthesiology & Perioperative Medicine
Joseph Quinn, M.D. – Neurology
Theresa Lusardi, Ph.D. – Legacy Research Institute
Jodi Lapidus, Ph.D. – Biostatistics
Christina Harrington, Ph.D. – Integrated Genomics Laboratory

Acupuncture and diet changes to treat neuropathic pain

Peripheral Neuropathy is a common neurologic condition, which affects the peripheral nerves. The most common symptoms associated with peripheral neuropathy are burning, tingling pain, which often feels like sharp electric sensation.

Walking, especially on hard or cold surfaces can be very painful, often described as walking on ground glass or stepping on pebbles. When large nerve fibers are involved, patients are more likely to experience sensory loss and weakness in the feet and sometimes hands.painful_feet_L-286x300

Small (microscopic) fiber involvement is typically limited to painful sensory symptoms. Often there are changes in the skin such as thinning and body hair loss, as well as muscle wasting in the feet and hands.

There are many common causes of peripheral neuropathy in the US. This includes diabetes, thyroid disorders, certain auto-immune conditions, vitamin B12 deficiency, alcohol abuse and exposure to toxins such as heavy metals or chemotherapy drugs. HIV, other infections and certain types of cancer can also cause this type of pain.

Clinicians and patients alike are well aware of how difficult it is to treat peripheral neuropathy.

In 2011 the American Academy of Neurology issued the latest guidelines for treatment of neuropathic pain and recommended that 4 therapeutic agents are probably effective for the treatment of neuropathic pain – pregabalin (Lyrica), gabapentin (Neurontin), duloxetine (Cymbalta) and amitriptyline (Elavil).

Unfortunately, these medications are for symptomatic management only and do not affect the disease course and they have various side effects including sedation, leg swelling, paradoxical agitation and weight gain.

It may be worth trying certain dietary changes, aimed to reduce systemic inflammation.

Diet modifications

Gluten intolerance has been reported in as high as 34% of patients with unexplained peripheral neuropathy. While positive blood tests for Celiac Disease are diagnostic, it may be worth trying a 4-6 week trial of strict gluten-free diet, regardless of test results as certain patients may have gluten intolerance and test negative for celiac disease.

Other dietary changes include a trial of lactose-free diet or refined carbohydrate-free diet, as both are known to be pro-inflammatory and may increase pain sensation. These dietary trials should be performed sequentially and for 4-6 weeks at a time.



Recently we examined the evidence for acupuncture in the treatment of peripheral neuropathy. We systematically reviewed 46 clinical trials and included 13 qualifying randomized controlled trials of acupuncture against sham acupuncture or standard medical therapy and concluded that acupuncture is effective in the treatment of diabetic neuropathy, Bell’s palsy, Carpal Tunnel Syndrome and it is most likely effective for the treatment of HIV-related neuropathy.

In the Neurology Wellness Clinic at OHSU we routinely treat patients with peripheral neuropathy and some of our best results are with idiopathic neuropathy (meaning of unknown cause). A typical treatment course consists of weekly sessions with electroacupuncture for 6-8, sometimes 10 weeks, followed by gradual spacing out to every other week, every third week, once a month and eventually maintenance treatment once every 2-3 months.



Alexandra Dimitrova, MD is an Assistant Professor in Neurology at OHSU, who sees patients with headache and pain in the
Neurology Wellness Clinic. In her practice she integrates traditional neurologic treatments with acupuncture, dietary and lifestyle changes and other complementary and integrative treatments.

A look back at a neuroscience meeting of the minds in the Pacific Northwest

Earl Blumenauer

Congressman Earl Blumenauer (D-OR)

A Congressman, a National Institutes of Health (NIH) director, a leader of a national advocacy group, and a scientist-turned-advocate shared a stage last month in Portland, OR, to talk about the importance and impact of neuroscience research nationwide.

This Neuroscience Town Hall was the final event of the NeuroFutures conference, organized and sponsored by the OHSU Brain Institute, the University of Washington, and the Allen Institute for Brain Science, which brought together scientists and clinicians in the Pacific Northwest to share recent discoveries in basic and translational neuroscience research.

Prior to the town hall, attendees browsed the gallery of 11 patient advocacy groups during the cocktail hour, including the Oregon chapters of the Alzheimer’s Association and NAMI, and the Parkinson’s Resources of Oregon, just to name a few.

Indeed, advocacy was the central topic for all of the speakers of the town hall.

Congressman Earl Blumenauer (D-OR) opened the discussion with praise for the “ecosystem for innovation in research” that exists in the Pacific Northwest, citing a history of positive collaborations between advocates, scientists, physicians, and the public. This collaborative environment is essential for “focusing on the overall arena of neuroscience,” which is the goal of the Congressional Neuroscience Caucus that he founded in 2010.

Caucus events are standing room only, which he attributes to the nature of the topic: “Neuroscience is one of the few areas that actually brings people together… intrigues instead of divides.”

Walter Koroshetz

Dr. Walter Koroshetz, director of the National Institute of Neurological Disorders and Stroke (NINDS)

In a light-hearted turn in the conversation, Congressman Blumenauer jokingly suggested that perhaps neuroscience can help us answer the question of “why well-educated Republicans are more skeptical of the science than well-educated Democrats,” especially with respect to climate change.

But all jokes aside, the Congressman emphasized that we do need “objective, analytical ways to get these points across… for the betterment of society,” and neuroscience could be the catalyst for reaching across the aisle.

Next to speak was Dr. Walter Koroshetz, director of the National Institute of Neurological Disorders and Stroke (NINDS), who started his segment with “What he said, that’s what I think too,” prompting laughter from the crowd.

Dr. Koroshetz emphasized that the NIH is able to fund over $31 billion in research grants, because of the generosity of tax payers. In fact, the NIH is a great analogy to the electoral system, since the NIH structure is very democratic: “anyone can submit a grant, and grants are reviewed by peers.”

Mark Rasenick

Dr. Mark Rasenick, Professor at the University of Illinois, Chicago, and chair of the Advocacy Committee for the American Brain Coalition

From an NIH funding perspective, Dr. Koroshetz told the audience “Current public health issues are heavily weighted towards neurological issues.”

He echoed the Congressman’s sentiment that we need a unified neuroscience effort, and that The White House BRAIN Initiative “floats all boats,” instead of focusing on certain diseases.

Support for basic research is imperative: “A recent major advancement in neuroscience comes from organisms that are more basic than bacteria”, speaking about optogentics, with allows us to turn individual nerve cells in the living brain on and off with light.

In order to “reduce the burden of mental health disorders in this country,” Dr. Koroshetz concluded with the need to bring together basic research, disease research, and patient support.

Dr. Mark Rasenick, Professor at the University of Illinois, Chicago, and chair of the Advocacy Committee for the American Brain Coalition, started his remarks by asking the crowd how many of us have participated in advocacy events. Only a handful of attendees raised their hands. Dr. Rasenick advised the audience: “To increase the enterprise of neuroscience, all of us need to be engaged… in activities on the Hill.”

As a scientist and advocate, the question turns to what to lobby for, since there is not enough money to go around.

Katie Sale

Katie Sale, Executive Director of the American Brain Coalition

From this perspective, lobbying for neuroscience research in general, in addition to specific diseases, will bring support for the field as a whole.

Dr. Rasenick concluded with a fantastic analogy for engagement across sectors: “Neuroscience is a big tent, and we all need to live in that tent, and tighten the wires to make that tent supportive.”

Katie Sale, Executive Director of the American Brain Coalition (ABC), piggy-backed on this analogy and the theme of the night: “We need to speak with one voice, and bring everyone together.”

As the nation’s largest organization of neuroscience-focused patient advocacy groups, the ABC is doing exactly that. Working through the Congressional Neuroscience Caucus, the ABC pulls together a clinician, a scientist, and a patient advocate for briefings on a wide range of topics – from mental illness and neurodegenerative diseases, to the effects of physical activity and music on the brain.

Summing up the collaborative spirit echoed by all the speakers, Ms. Sale concluded the night with a positive sentiment: “Step by step, we can all make a difference.”




Kateri Spinelli, Ph.D. is a post doctoral fellow in the Department of Neurology.


Research affirms use of thrombectomy procedure for stroke treatment

Stroke is the fifth leading cause of death in America and a leading cause of adult disability, according to the National Stroke Association. For patients who experience strokes and the physicians who treat them, time is brain.

Time is brain.

Time is brain.

A mechanical thrombectomy is a groundbreaking stroke treatment that our doctors use to return patients to full function at an astonishing speed – often within a matter of hours of having a stroke.

Because this procedure can remove the clot so quickly, the greater the patient’s chance of a full recovery.

The typical treatment for an acute stroke patient is an IV of a clot-busting, brain-saving drug called tPA that dissolves clots and improves blood flow to the brain. But dissolving the clot can take a few hours. In addition, an IV of tPA must be started within 3 hours of the onset of the stroke.

For patients with more severe stroke, TPA alone is not an effective option. The thrombectomy procedure can be started up to 8 hours after the onset of a stroke so it has a much longer time window than that of TPA, which gives the patient a better chance of recovery.

Hormozd Bozorgchami, M.D., Oregon Stroke Center at OHSU

Hormozd Bozorgchami, M.D., Oregon Stroke Center at OHSU

How it works: The treating physician quickly removes the clot by inserting a catheter into the patient’s groin, during an angiography, and then guides  it through a blood vessel until it reaches the clot. At the end of the catheter is a basket-like stent — a small expandable tube — that, once open, restores blood flow through the artery. The stent with the blood clot stuck to it is then carefully removed.

Our use of this procedure was recently bolstered by the findings of two trials published in the New England Journal of Medicine. The studies confirmed what our physicians have long seen after performing mechanical thrombectomies on their patients: The procedure improves patient outcomes.

Local television news station KGW recently spotlighted OHSU’s pioneering use of the procedure and spoke with Rod Moore, a patient of Dr. Hormozd Bozorgchami with the Oregon Stroke Center at OHSU. Mr. Moore is an example of how quickly many patients recover after this procedure. After the clot was removed, Mr. Moore, while still lying on the operating table, reached out and tried to grab Dr. Bozorgchami with his previously paralyzed arm.

You can watch the story, and view pictures of the procedure here.


Elizabeth Seaberry


Elizabeth Seaberry is a Senior Media Relations Specialist at the OHSU Brain Institute.


NeuroFutures 2015: Neuroscience innovation in the Pacific Northwest

Last month, scientists and clinicians in the Pacific Northwest spent three days sharing new discoveries, igniting collaborations, and discussing the future of neuroscience research at the NeuroFutures meeting in Portland.

Stimulating research talks covered advances in clinical technologies, such as deep brain stimulation for depression, retinal prosthetics, and advanced MRI imaging to study myelination, sleep, and ADHD, as well as basic science discoveries that are the building blocks for how we understand the cellular basis of brain function.NeuroFutures

From tadpoles to rodents to non-human primates, many of the basic science speakers focused on tracking neuronal circuits, both anatomically and functionally, and pairing these data with specific behaviors or disease states.

This combination of basic and translational research, with a focus on technology development and whole-brain function, is precisely aligned with the goals of the White House BRAIN Initiative, which inspired OHSU, the University of Washington, and the Allen Institute for Brain Science to establish the annual NeuroFutures meeting in 2014.

In addition to the scientific and clinical talks, a section on Policies and Initiatives featured talks from Dr. Walter Koroshetz, director of the National Institute of Neurological Disorders and Stroke (NINDS), and Dr. Carlos Peña, director of the Division of Neurological and Physical Medicine Devices at the U.S. Food and Drug Administration (FDA).

Dr. Koroshetz shared updates from the BRAIN Initiative, including newly published discoveries from researchers that were awarded BRAIN grants through NINDS.Walter Koroshetz

Dr. Peña gave an overview of the FDA approval process for neurological devices, encouraging researchers to contact his office early in the research and development phase, to learn what requirements are needed for pre-clinical trial data.

Other highlights from the meeting included a thought-provoking talk from Hank Greely, JD, who spoke about the ethical considerations that scientists and physicians should consider when working with neurodevices in patients.

This topic was complimented by panel discussions on neurodevices and biologics, where the general opinion was positive yet realistic about the current and future treatment options for patients with neurological diseases, from depression to Alzheimer’s Disease.

town hallThe scientific portion of the conference concluded with a workshop and tutorial on brain mapping tools from the Allen Brain Institute.

The final night of the conference featured an exciting “meeting of the minds” Neuroscience Town Hall. Congressman Earl Blumenauer (D-OR), Dr. Koroshetz, Dr. Mark Resnick, Professor and Advocate at the University of Illinois, Chicago, and Katie Sale, Executive Director of the American Brain Coalition took the stage to share their thoughts and perspectives on the BRAIN Initiative and the role of advocacy organizations in promoting neuroscience research.

Everyone in the group emphasized the need to consider neuroscience as a whole, in addition to thinking about individual diseases.

This theme translates well to the goals of the BRAIN Initiative: the development and integration of various technologies and experts from many fields, to advance the wide goal of understanding brain function in normal and diseased states.

In his opening remarks, Congressman Blumenauer praised the Pacific Northwest as an “ecosystem for innovation in research.”

The NeuroFutures conference as a whole perfectly echoed this sentiment, showcasing exciting advances in both clinical and basic neuroscience research, and a bright future for neuroscience in the Pacific Northwest.




Kateri Spinelli, Ph.D. is a post doctoral fellow in the Department of Neurology.


Three questions for Sean Speese

Sean SpeeseSean Speese, Ph.D., is an Assistant Professor at the OHSU Jungers Center for Neurosciences Research.

His career has spanned 17 years of research in invertebrate model systems. 

What questions are you trying to answer in your work?

Our main overarching goal is to understand how cells regulate expression of specific genes in time and space. For example, neurons in our brains are quite large, highly arborized and can span long distances.

However, these cells are tasked with responding locally to cues in the brain, which requires them to precisely regulate gene expression in time and space. The ability of neurons to perform these actions is critical for learning and memory and gets disrupted in various neurological diseases.

What is the most important aspect of support that OHSU provides to you currently and how would you like this or other support to grow in the future?

One of the critical events that helped me launch my career at OHSU is being awarded the Oregon Scientist Development Award through the Medical Research Foundation (MRF).  This provided critically needed funding to generate preliminary data for my initial grant submissions to the NSF and NIH.

In the future I hope to see OHSU continue to support young researchers asking basic biological questions in model organisms.

If you could pick one brain health tip to share with our readers, what would it be? What do you prioritize when it comes to your own brain health?

I can’t say that this advice will apply to everyone as we all have varying genetic backgrounds and outside environmental factors, but there is a growing body of evidence indicating that regular exercise can improve brain health and function.

I myself use exercise as one of the main ways to promote my own brain health. In particular, I enjoy riding my mountain bike fast through the woods. The graduate students will attest that it is not uncommon for me to show up in lab with scrapes from a recent bike crash.


Want to hear more from Dr. Speese? He’s the featured speaker at OMSI’s Science Pub Hillsboro on August 31.


OHSU Brain Institute

OHSU Brain Institute Profile image

We are a national leader in brain disease treatment and research.

Participation Guidelines

Remember: information you share here is public; it isn't medical advice. Need advice or treatment? Contact your healthcare provider directly. Read our Terms of Use and this disclaimer for details.